OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28794–28800

Mode multiplexed single-photon and classical channels in a few-mode fiber

Joel Carpenter, Chunle Xiong, Matthew J. Collins, Juntao Li, Thomas F. Krauss, Benjamin J. Eggleton, Alex S. Clark, and Jochen Schröder  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28794-28800 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1380 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We classically measure the entire propagation matrix of a few-mode fiber and use a spatial light modulator to undo modal mixing and recover single-photons launched onto each of the eigenmodes of the fiber at one end, but arriving as mixed modal superpositions at the other. We exploit the orthogonality of these modal channels to improve the isolation between a quantum and classical channel launched onto different spatial and polarization modes at different wavelengths. The spatial diversity of the channels provides an additional 35dB of isolation in addition to that provided by polarization and wavelength.

© 2013 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(270.0270) Quantum optics : Quantum optics
(270.5565) Quantum optics : Quantum communications

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 17, 2013
Revised Manuscript: October 28, 2013
Manuscript Accepted: October 28, 2013
Published: November 15, 2013

Virtual Issues
Nonlinear Optics (2013) Optics Express

Joel Carpenter, Chunle Xiong, Matthew J. Collins, Juntao Li, Thomas F. Krauss, Benjamin J. Eggleton, Alex S. Clark, and Jochen Schröder, "Mode multiplexed single-photon and classical channels in a few-mode fiber," Opt. Express 21, 28794-28800 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Gisin and R. Thew, “Quantum communications,” Nat. Photonics1(3), 165–171 (2007). [CrossRef]
  2. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” International Conference on Computers, Systems and Signal Processing, 175–179 (1984).
  3. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67(6), 661–663 (1991). [CrossRef] [PubMed]
  4. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett.68(21), 3121–3124 (1992). [CrossRef] [PubMed]
  5. P. Eraerds, N. Walenta, M. Legre, N. Gisin, and H. Zbinden, “Quantum key distribution and 1gbps data encryption over a single fiber,” New J. Phys.12(6), 063027 (2010). [CrossRef]
  6. T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter, “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” Phys. Rev. Lett.98(1), 010504 (2007). [CrossRef] [PubMed]
  7. Y. Liu, T.-Y. Chen, J. Wang, W.-Q. Cai, X. Wan, L.-K. Chen, J.-H. Wang, S.-B. Liu, H. Liang, L. Yang, C.-Z. Peng, K. Chen, Z.-B. Chen, and J. W. Pan, “Decoy-state quantum key distribution with polarized photons over 200 km,” Opt. Express18(8), 8587–8594 (2010). [CrossRef] [PubMed]
  8. A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys.5(6), 389–392 (2009). [CrossRef]
  9. P. D. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fiber using wavelength-division multiplexing,” Electron. Lett.33(3), 188–190 (1997). [CrossRef]
  10. T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys.11(10), 105001 (2009). [CrossRef]
  11. N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys.11(4), 045012 (2009). [CrossRef]
  12. E. Ip, N. Bai, Y. Huang, E. Mateo, F. Yaman, S. Bickham, H. Tam, C. Lu, M. Li, S. Ten, A. P. T. Lau, V. Tse, G. Peng, C. Montero, X. Prieto, and G. Li, “88x3x112-Gb/s WDM transmission over 50-km of three-mode fiber with inline multimode fiber amplifier,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (Optical Society of America, 2011), paper Th.13.C.2. [CrossRef]
  13. A. Li, A. Al Amin, X. Chen, and W. Shieh, “Reception of mode and polarization multiplexed 107-Gb/s CO-OFDM signal over a two-mode fiber,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC),2011and the National Fiber Optic Engineers Conference, pp. 1, 3, 6–10 March 2011.
  14. G. B. Xavier and J. P. von der Weid, “Limitations for transmission of photonic qubits in optical fibers carrying telecom traffic,” Electron. Lett.46(15), 1071–1072 (2010). [CrossRef]
  15. R. H. Stolen, “Relation between the effective area of a single-mode fiber and the capture fraction of spontaneous Raman scattering,” J. Opt. Soc. Am. B19(3), 498–501 (2002). [CrossRef]
  16. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001). [CrossRef] [PubMed]
  17. R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, “Quantum entanglement of high angular momenta,” Science338(6107), 640–643 (2012). [CrossRef] [PubMed]
  18. W. Löffler, T. G. Euser, E. R. Eliel, M. Scharrer, P. St. J. Russell, and J. P. Woerdman, “Fiber transport of spatially entangled photons,” Phys. Rev. Lett.106(24), 240505 (2011). [CrossRef] [PubMed]
  19. J. Carpenter, B. C. Thomsen, and T. D. Wilkinson, “Degenerate mode-group division multiplexing,” J. Lightwave Technol.30(24), 3946–3952 (2012). [CrossRef]
  20. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  21. C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett.36(17), 3413–3415 (2011). [CrossRef] [PubMed]
  22. C. Xiong, C. Monat, M. J. Collins, L. Tranchant, D. Petiteau, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, “Characteristics of correlated photon pairs generated in ultra-compact silicon slow-light photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron.18(6), 1676–1683 (2012). [CrossRef]
  23. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express16(9), 6227–6232 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited