OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28817–28823

Enhanced nonlinear optical effects due to the excitation of optical Tamm plasmon polaritons in one-dimensional photonic crystal structures

Kwang Jin Lee, J. W. Wu, and Kihong Kim  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28817-28823 (2013)
http://dx.doi.org/10.1364/OE.21.028817


View Full Text Article

Enhanced HTML    Acrobat PDF (1026 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We suggest optimally designed one-dimensional metal/photonic crystal structures for the excitation of optical Tamm plasmon polaritons, which show strongly enhanced electromagnetic field intensities compared to those due to conventional surface plasmon excitations. We assume that the photonic crystal is made of weakly nonlinear optical materials and calculate the reflectance and the electromagnetic field distribution precisely, using the invariant imbedding method generalized to nonlinear media. We find field intensity enhancement factors as large as 3,000 at the metal/photonic crystal interface. We verify that due to this strong enhancement, nonlinear optical effects such as optical bistability can be observed for very small values of the incident wave power. Our results imply that using our structure, very strong surface enhanced Raman scattering signals can be achieved and optical switching devices can be operated in much lower threshold light intensities.

© 2013 OSA

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 17, 2013
Revised Manuscript: October 21, 2013
Manuscript Accepted: October 22, 2013
Published: November 15, 2013

Virtual Issues
Nonlinear Optics (2013) Optics Express

Citation
Kwang Jin Lee, J. W. Wu, and Kihong Kim, "Enhanced nonlinear optical effects due to the excitation of optical Tamm plasmon polaritons in one-dimensional photonic crystal structures," Opt. Express 21, 28817-28823 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28817


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003). [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006). [CrossRef] [PubMed]
  3. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005). [CrossRef]
  4. V. A. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B72, 233102 (2005). [CrossRef]
  5. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlian, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B76, 165415 (2007). [CrossRef]
  6. S. Brand, M. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B79, 085416 (2009). [CrossRef]
  7. N. Malkova and C. Z. Ning, “Shockley and Tamm surface states in photonic crystals,” Phys. Rev. B73, 113113 (2006). [CrossRef]
  8. S. H. Tsang, S. F. Yu, X. F. Li, H. Y. Yang, and H. K. Liang, “Observation of Tamm plasmon polaritons in visible regime from ZnO/Al2O3distributed Bragg reflector-Ag interface,” Opt. Commun.284, 1890–1892 (2011). [CrossRef]
  9. M. E. Sasin, R. P. Seisyan, M. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett.92, 251112 (2008). [CrossRef]
  10. I. Iorsh, P. V. Panicheva, I. A. Slovinskii, and M. A. Kaliteevski, “Coupled Tamm plasmons,” Tech. Phys. Lett.38, 351–353 (2012). [CrossRef]
  11. R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. A. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett.100, 062101 (2012). [CrossRef]
  12. C.-H. Xue, H.-T. Jiang, H. Lu, G.-Q. Du, and H. Chen, “Efficient third-harmonic generation based on Tamm plasmon polaritons,” Opt. Lett.38, 959–961 (2013). [CrossRef] [PubMed]
  13. I. V. Treshin, V. V. Klimov, P. N. Melentiev, and V. I. Balykin, “Optical Tamm state and extraordinary light transmission through a nanoaperture,” Phys. Rev. A88, 023832 (2013). [CrossRef]
  14. K. Kim, D. K. Phung, F. Rotermund, and H. Lim, “Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses,” Opt. Express16, 1150–1164 (2008). [CrossRef] [PubMed]
  15. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).
  16. Y. Liu, S. Xu, X. Xuyang, B. Zhao, and W. Xu, “Long-range surface plasmon field-enhanced Raman scattering spectroscopy based on evanescent field excitation,” J. Phys. Chem. Lett.2, 2218–2222 (2011). [CrossRef]
  17. K. Kim, D. K. Phung, F. Rotermund, and H. Lim, “Strong influence of nonlinearity and surface plasmon excitations on the lateral shift,” Opt. Express16, 15506–15513 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited