OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28824–28835

Spectral self-imaging of time-periodic coherent frequency combs by parabolic cross-phase modulation

Reza Maram and José Azaña  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28824-28835 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1261 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Integer and fractional spectral self-imaging effects are induced on infinite-duration periodic frequency combs (probe signal) using cross-phase modulation (XPM) with a parabolic pulse train as pump signal. Free-spectral-range tuning (fractional effects) or wavelength-shifting (integer effects) of the frequency comb can be achieved by changing the parabolic pulse peak power or/and repetition rate without affecting the spectral envelope shape and bandwidth of the original comb. For design purposes, we derive the complete family of different pump signals that allow implementing a desired spectral self-imaging process. Numerical simulation results validate our theoretical analysis. We also investigate the detrimental influence of group-delay walk-off and deviations in the nominal temporal shape or power of the pump pulses on the generated output frequency combs.

© 2013 Optical Society of America

OCIS Codes
(060.5060) Fiber optics and optical communications : Phase modulation
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Nonlinear Optics

Original Manuscript: September 17, 2013
Revised Manuscript: October 29, 2013
Manuscript Accepted: October 30, 2013
Published: November 15, 2013

Virtual Issues
Nonlinear Optics (2013) Optics Express

Reza Maram and José Azaña, "Spectral self-imaging of time-periodic coherent frequency combs by parabolic cross-phase modulation," Opt. Express 21, 28824-28835 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron.7(4), 728–744 (2001). [CrossRef]
  2. J. Azaña, “Spectral Talbot phenomena of frequency combs induced by cross-phase modulation in optical fibers,” Opt. Lett.30(3), 227–229 (2005). [CrossRef] [PubMed]
  3. J. Caraquitena, M. Beltrán, R. Llorente, J. Martí, and M. A. Muriel, “Spectral self-imaging effect by time-domain multilevel phase modulation of a periodic pulse train,” Opt. Lett.36(6), 858–860 (2011). [CrossRef] [PubMed]
  4. A. Malacarne and J. Azaña, “Discretely tunable comb spacing of a frequency comb by multilevel phase modulation of a periodic pulse train,” Opt. Express21(4), 4139–4144 (2013). [CrossRef] [PubMed]
  5. L. Consolino, G. Giusfredi, P. De Natale, M. Inguscio, and P. Cancio, “Optical frequency comb assisted laser system for multiplex precision spectroscopy,” Opt. Express19(4), 3155–3162 (2011). [CrossRef] [PubMed]
  6. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: Technology and applications,” Annu. Rev. Anal. Chem.3(1), 175–205 (2010). [CrossRef] [PubMed]
  7. P. Del'Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009). [CrossRef]
  8. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002). [CrossRef] [PubMed]
  9. S. C. Chan, G. Q. Xia, and J. M. Liu, “Optical generation of a precise microwave frequency comb by harmonic frequency locking,” Opt. Lett.32(13), 1917–1919 (2007). [CrossRef] [PubMed]
  10. S. Tainta, W. Amaya, M. J. Erro, M. J. Garde, S. Sales, and M. A. Muriel, “WDM compatible and electrically tunable SPE-OCDMA system based on the temporal self-imaging effect,” Opt. Lett.36(3), 400–402 (2011). [CrossRef] [PubMed]
  11. S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, “10 to 110 GHz tunable opto-electronic frequency synthesis using optical frequency comb generator and uni-travelling-carrier photodiode,” Electron. Lett.37(12), 780–781 (2001). [CrossRef]
  12. T. Healy, F. C. Garcia Gunning, A. D. Ellis, and J. D. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express15(6), 2981–2986 (2007). [CrossRef] [PubMed]
  13. A. Alatawi, R. P. Gollapalli, and L. Duan, “Radio-frequency clock delivery via free-space frequency comb transmission,” Opt. Lett.34(21), 3346–3348 (2009). [CrossRef] [PubMed]
  14. J. Azaña and S. Gupta, “Complete family of periodic Talbot filters for pulse repetition rate multiplication,” Opt. Express14(10), 4270–4279 (2006). [CrossRef] [PubMed]
  15. C. Finot, J. M. Dudley, B. Kibler, D. J. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Sel. Top. Quantum Electron.45(11), 1482–1489 (2009). [CrossRef]
  16. J. P. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. J. Fuchs, E. B. Kley, H. Zellmer, and A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express10(14), 628–638 (2002). [CrossRef] [PubMed]
  17. P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs,” Opt. Express14(21), 9611–9616 (2006). [CrossRef] [PubMed]
  18. F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express14(17), 7617–7622 (2006). [CrossRef] [PubMed]
  19. T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhang, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photon. Technol. Lett.20(13), 1097–1099 (2008). [CrossRef]
  20. T. Hirooka and M. Nakazawa, “Optical adaptive equalization of high-speed signals using time-domain optical Fourier transformation,” J. Lightwave Technol.24(7), 2530–2540 (2006). [CrossRef]
  21. T. Hirooka and M. Nakazawa, “All-optical 40-GHz time-domain Fourier transformation using XPM with a dark parabolic pulse,” IEEE Photon. Technol. Lett.20(22), 1869–1871 (2008). [CrossRef]
  22. Y. Ozeki, Y. Takushima, K. Aiso, and K. Kikuchi, “High repetition-rate similariton generation in normal dispersion erbium-doped fiber amplifiers and its application to multi-wavelength light sources,” IEICE Trans. Electron.88(5), 904–911 (2005). [CrossRef]
  23. S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, “Generation of 20-Ghz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun.260(1), 301–306 (2006). [CrossRef]
  24. T. Hirooka and M. Nakazawa, “Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion,” Opt. Lett.29(5), 498–500 (2004). [CrossRef] [PubMed]
  25. F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Pulse retiming based on XPM using parabolic pulses formed in a fiber bragg grating,” IEEE Photon. Technol. Lett.18(7), 829–831 (2006). [CrossRef]
  26. T. Hirooka, M. Nakazawa, and K. Okamoto, “Bright and dark 40 GHz parabolic pulse generation using a picosecond optical pulse train and an arrayed waveguide grating,” Opt. Lett.33(10), 1102–1104 (2008). [CrossRef] [PubMed]
  27. D. Krcmarík, R. Slavík, Y. Park, and J. Azaña, “Nonlinear pulse compression of picosecond parabolic-like pulses synthesized with a long period fiber grating filter,” Opt. Express17(9), 7074–7087 (2009). [CrossRef] [PubMed]
  28. J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett.15(4), 581–583 (2003). [CrossRef]
  29. J. Azaña, N. K. Berger, B. Levit, and B. Fischer, “Spectral Fraunhofer regime: time-to-frequency conversion by the action of a single time lens on an optical pulse,” Appl. Opt.43(2), 483–490 (2004). [CrossRef] [PubMed]
  30. E. R. Andresen, C. Finot, D. Oron, and H. Rigneault, “Spectral analog of the Gouy phase shift,” Phys. Rev. Lett.110(14), 143902 (2013). [CrossRef]
  31. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  32. M. Galili, L. K. Oxenløwe, H. C. H. Mulvad, A. T. Clausen, and P. Jeppesen, “Optical wavelength conversion by cross-phase modulation of data signals up to 640 Gb/s,” IEEE J. Sel. Top. Quantum Electron.14(3), 573–579 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited