OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28842–28848

Surface plasmon-enhanced transverse magnetic second-harmonic generation

Wei Zheng, Aubrey T. Hanbicki, Berry T. Jonker, and Gunter Lüpke  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28842-28848 (2013)
http://dx.doi.org/10.1364/OE.21.028842


View Full Text Article

Enhanced HTML    Acrobat PDF (1070 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present experimental studies on surface plasmon (SP) enhanced transverse magnetic second-harmonic generation (T-MSHG) in single-crystal iron films grown by molecular beam epitaxy at room temperature on MgO (001) substrates. We show that it is possible to achieve both strongly enhanced T-MSHG intensity and high magnetic contrast ratio under attenuated total reflection configuration without using complex heterostructures because MSHG is generated directly at the iron surface where SPs are present. The T-MSHG has a much larger contrast ratio than transverse magneto-optical Kerr effect (T-MOKE) and shows great potential for a new generation of bio-chemical sensors due to its very high surface sensitivity. In addition, by analyzing the experimental results and the simulations based on SP field-enhancement theory, we demonstrate that the second-order susceptibility of MSHG shows great anisotropy and the tensor χ xzz odd is dominant in our sample.

© 2013 Optical Society of America

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(230.3810) Optical devices : Magneto-optic systems
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 17, 2013
Revised Manuscript: October 8, 2013
Manuscript Accepted: October 8, 2013
Published: November 15, 2013

Virtual Issues
Nonlinear Optics (2013) Optics Express

Citation
Wei Zheng, Aubrey T. Hanbicki, Berry T. Jonker, and Gunter Lüpke, "Surface plasmon-enhanced transverse magnetic second-harmonic generation," Opt. Express 21, 28842-28848 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28842


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” in Tracts in Modern Physics (Springer-Verlag, 1988, Vol. 111).
  2. H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic generation with surface plasmons in silver films,” Phys. Rev. Lett.33(26), 1531–1534 (1974). [CrossRef]
  3. S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett.101(5), 056802 (2008). [CrossRef] [PubMed]
  4. V. I. Safarov, V. A. Kosobukin, C. Hermann, G. Lampel, J. Peretti, and C. Marlière, “Magneto-optical effects enhanced by surface plasmons in metallic multilayer films,” Phys. Rev. Lett.73(26), 3584–3587 (1994). [CrossRef] [PubMed]
  5. B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett.31(8), 1085–1087 (2006). [CrossRef] [PubMed]
  6. D. Regatos, D. Fariña, A. Calle, A. Cebollada, B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing,” J. Appl. Phys.108(5), 054502 (2010). [CrossRef]
  7. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomays, A. Leitenstorfers, and R. Bratschitschs, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics4(2), 107–110 (2010). [CrossRef]
  8. A. V. Chetvertukhin, A. A. Grunin, A. V. Baryshev, T. V. Dolgova, H. Uchida, M. Inoue, and A. A. Fedyanin, “Magneto-optical Kerr effect enhancement at the Wood’s anomaly in magnetoplasmonic crystals,” J. Magn. Magn. Mater.324(21), 3516–3518 (2012). [CrossRef]
  9. N. Bonod, R. Reinisch, E. Popov, and M. Nevière, “Optimization of surface-plasmon-enhanced magneto-optical effects,” J. Opt. Soc. Am. B21(4), 791–797 (2004). [CrossRef]
  10. Y. Demidenko, D. Makarov, O. G. Schmidt, and V. Lozovski, “Surface plasmon-induced enhancement of the magneto-optical Kerr effect in magnetoplasmonic heterostructures,” J. Opt. Soc. Am. B28(9), 2115–2122 (2011). [CrossRef]
  11. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  12. A. Kirilyuk and T. Rasing, “Magnetization-induced second harmonic generation,” in Handbook of Magnetism and Advanced Magnetic Materials, Volume 3: Novel Techniques for Characterizing and Preparing Samples (John Wiley & Sons, Ltd. 2007).
  13. M. Fiebig, D. Fröhlich, B. B. Krichevtsov, and R. V. Pisarev, “Second harmonic generation and magnetic-dipole-electric-dipole interference in antiferromagnetic Cr2O3.,” Phys. Rev. Lett.73(15), 2127–2130 (1994). [CrossRef] [PubMed]
  14. G. Tessier, C. Malouin, P. Georges, A. Brun, D. Renard, V. V. Pavlov, P. Meyer, J. Ferré, and P. Beauvillain, “Magnetization-induced second-harmonic generation enhanced by surface plasmons in ultrathin Au/Co/Au metallic films,” Appl. Phys. B68(3), 545–548 (1999). [CrossRef]
  15. D. M. Newman, M. L. Wears, R. J. Matelon, and D. Mchugh, “Non-linear optics and magneto-optics on nano-structured interfaces,” Appl. Phys. B74(7-8), 719–722 (2002). [CrossRef]
  16. V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano5(1), 91–96 (2011). [CrossRef] [PubMed]
  17. Y. Fan, K. J. Smith, G. Lüpke, A. T. Hanbicki, R. Goswami, C. H. Li, H. B. Zhao, and B. T. Jonker, “Exchange bias of the interface spin system at the Fe/MgO interface,” Nat. Nanotechnol.8(6), 438–444 (2013). [CrossRef] [PubMed]
  18. W. H. Weber and G. W. Ford, “Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation,” Opt. Lett.6(3), 122–124 (1981). [CrossRef] [PubMed]
  19. P. Berini, “Long-range surface plasmon polaritons,” Advances in Optics and Photonics1(3), 484–588 (2009). [CrossRef]
  20. G. J. Kovacs, “Surface polariton in the ATR angular spectra of a thin iron film bounded by dielectric layers,” J. Opt. Soc. Am.68(10), 1325–1332 (1978). [CrossRef]
  21. K. Aslan, M. Weisenberg, E. Hortle, and C. D. Geddes, “Surface plasmon coupled chemiluminescence from iron thin films: directional and approaching fixed angle observation,” J. Appl. Phys.106(1), 014131 (2009). [CrossRef]
  22. T. Y. F. Tsang, “Surface-plasmon-enhanced third-harmonic generation in thin silver films,” Opt. Lett.21(4), 245–247 (1996). [CrossRef] [PubMed]
  23. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–1120 (1983). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited