OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28856–28861

The dual annihilation of a surface plasmon and a photon by virtue of a three-wave mixing interaction

Jan Heckmann, Marie-Elena Kleemann, Nicolai B. Grosse, and Ulrike Woggon  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28856-28861 (2013)
http://dx.doi.org/10.1364/OE.21.028856


View Full Text Article

Enhanced HTML    Acrobat PDF (1375 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The enhanced nonlinear interactions that are driven by surface-plasmon resonances have readily been exploited for the purpose of optical frequency conversion in metallic structures. As of yet, however, little attention has been payed to the exact particulate nature of the conversion process. We show evidence that a surface plasmon and photon can annihilate simultaneously to generate a photon having the sum frequency. The signature for this nonlinear interaction is revealed by probing the condition for momentum conservation using a two-beam k-space spectroscopic method that is applied to a gold film in the Kretschmann geometry. The inverse of the observed nonlinear interaction—an exotic form of parametric down-conversion—would act as a source of surface plasmons in the near-field that are quantum correlated with photons in the far-field.

© 2013 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 17, 2013
Revised Manuscript: October 18, 2013
Manuscript Accepted: October 18, 2013
Published: November 15, 2013

Virtual Issues
Nonlinear Optics (2013) Optics Express

Citation
Jan Heckmann, Marie-Elena Kleemann, Nicolai B. Grosse, and Ulrike Woggon, "The dual annihilation of a surface plasmon and a photon by virtue of a three-wave mixing interaction," Opt. Express 21, 28856-28861 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28856


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).
  2. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sensors Actuators B54, 3–15 (1999). [CrossRef]
  3. G. I. Stegeman, J. J. Burke, and D. G. Hall, “Nonlinear optics of long range surface plasmons,” Appl. Phys. Lett.41, 906–908 (1982). [CrossRef]
  4. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6, 737–748 (2012). [CrossRef]
  5. H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic generation with surface plasmons in silver films,” Phys. Rev. Lett.33, 1531–1534 (1974). [CrossRef]
  6. F. De Martini and Y. R. Shen, “Nonlinear excitation of surface polaritons,” Phys. Rev. Lett.36, 216–219 (1976). [CrossRef]
  7. C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface-enhanced second-harmonic generation,” Phys. Rev. Lett.46, 145–148 (1981). [CrossRef]
  8. K. Liu, L. Zhan, Z. Y. Fan, M. Y. Quan, S. Y. Luo, and Y. X. Xia, “Enhancement of second-harmonic generation with phase-matching on periodic sub-wavelength structured metal film,” Opt. Commun.276, 8–13 (2007). [CrossRef]
  9. Y. E. Lozovik, S. P. Merkulova, M. M. Nazarov, and A. P. Shkurinov, “From two-beam surface plasmon interaction to femtosecond surface optics and spectroscopy,” Phys. Lett. A276, 127–132 (2000). [CrossRef]
  10. R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun.248, 249–256 (2005). [CrossRef]
  11. S. Palomba, S. Zhuang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater.11, 34–38 (2012). [CrossRef]
  12. N. B. Grosse, J. Heckmann, and U. Woggon, “Nonlinear plasmon-photon interaction resolved by k-space spectroscopy,” Phys. Rev. Lett.108, 136802 (2012). [CrossRef] [PubMed]
  13. J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett.103, 266802 (2009). [CrossRef]
  14. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett.21, 1530–1533 (1968). [CrossRef]
  15. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Phys. A23, 2135–2136 (1968).
  16. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  17. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  18. S. Palomba and L. Novotny, “Nonlinear excitation of surface plasmon polaritons by four-wave mixing,” Phys. Rev. Lett.101, 056802 (2008). [CrossRef] [PubMed]
  19. J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surfaces,” Phys. Rev. B21, 4389–4402 (1980). [CrossRef]
  20. Y. R. Shen, “Surfaces probed by nonlinear optics,” Surf. Sci.299, 551–562 (1994). [CrossRef]
  21. P. Guyot-Sionnest and Y. R. Shen, “Bulk contribution in surface second-harmonic generation,” Phys. Rev. B38, 7985–7989 (1988). [CrossRef]
  22. P. Ginzburg, A. Hayat, N. Berkovitch, and M. Orenstein, “Nonlocal ponderomotive nonlinearity in plasmonics,” Opt. Lett.35, 1551–1553 (2010). [CrossRef] [PubMed]
  23. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys.125, 164705 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited