OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28933–28940

Nonreciprocal resonant transmission/reflection based on a one-dimensional photonic crystal adjacent to the magneto-optical metal film

Cheng He, Xiao-Chen Sun, Zhen Zhang, Chang-Sheng Yuan, Ming-Hui Lu, Yan-Feng Chen, and Cheng Sun  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 28933-28940 (2013)
http://dx.doi.org/10.1364/OE.21.028933


View Full Text Article

Enhanced HTML    Acrobat PDF (1609 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the nonreciprocal Tamm plasmon polaritons (TPPs) inside the light cone, which can be directly excited at the interface between the one-dimensional photonic crystal (1DPC) and magneto-optical (MO) metal film. Applying an external magnetic field on the MO metal, the broken time-reversal symmetry gives rise to such nonreciprocal electrons oscillation mediated plasmon mode. Separately exciting the forward and backward TPPs, light can be transmitted and reflected in one-way. An analytic dispersion relation based on admittance-matching approach is obtained. This design offers promising potential in realizing the optical diode.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: September 27, 2013
Revised Manuscript: October 30, 2013
Manuscript Accepted: November 8, 2013
Published: November 15, 2013

Citation
Cheng He, Xiao-Chen Sun, Zhen Zhang, Chang-Sheng Yuan, Ming-Hui Lu, Yan-Feng Chen, and Cheng Sun, "Nonreciprocal resonant transmission/reflection based on a one-dimensional photonic crystal adjacent to the magneto-optical metal film," Opt. Express 21, 28933-28940 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28933


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. D. M. Haldane and S. Raghu, “Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry,” Phys. Rev. Lett.100(1), 013904 (2008). [CrossRef] [PubMed]
  2. S. Raghu and F. D. M. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A78(3), 033834 (2008). [CrossRef]
  3. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal,” Phys. Rev. Lett.100(1), 013905 (2008). [CrossRef] [PubMed]
  4. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature461(7265), 772–775 (2009). [CrossRef] [PubMed]
  5. B. Liang, B. Yuan, and J. C. Cheng, “Acoustic Diode: Rectification of Acoustic Energy Flux in One-Dimensional Systems,” Phys. Rev. Lett.103(10), 104301 (2009). [CrossRef] [PubMed]
  6. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009). [CrossRef]
  7. A. E. Serebryannikov, “One-way diffraction effects in photonic crystal gratings made of isotropic materials,” Phys. Rev. B80(15), 155117 (2009). [CrossRef]
  8. X.-F. Li, X. Ni, L. Feng, M.-H. Lu, C. He, and Y.-F. Chen, “Tunable Unidirectional Sound Propagation through a Sonic-Crystal-Based Acoustic Diode,” Phys. Rev. Lett.106(8), 084301 (2011). [CrossRef] [PubMed]
  9. C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys.6(3), 192–195 (2010). [CrossRef]
  10. L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal Light Propagation in a Silicon Photonic Circuit,” Science333(6043), 729–733 (2011). [CrossRef] [PubMed]
  11. X. Ao, Z. Lin, and C. T. Chan, “One-way edge mode in a magneto-optical honeycomb photonic crystal,” Phys. Rev. B80(3), 033105 (2009). [CrossRef]
  12. Y. Poo, R. X. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental Realization of Self-Guiding Unidirectional Electromagnetic Edge States,” Phys. Rev. Lett.106(9), 093903 (2011). [CrossRef] [PubMed]
  13. J.-X. Fu, R.-J. Liu, and Z.-Y. Li, “Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces,” Appl. Phys. Lett.97(4), 041112 (2010). [CrossRef]
  14. A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett.95(1), 011101 (2009). [CrossRef]
  15. C. He, X.-L. Chen, M.-H. Lu, X.-F. Li, W.-W. Wan, X.-S. Qian, R.-C. Yin, and Y.-F. Chen, “Tunable one-way cross-waveguide splitter based on gyromagnetic photonic crystal,” Appl. Phys. Lett.96(11), 111111 (2010). [CrossRef]
  16. H. Raether, Surface Plasmons (Springer, 1988).
  17. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-Way Electromagnetic Waveguide Formed at the Interface between a Plasmonic Metal under a Static Magnetic Field and a Photonic Crystal,” Phys. Rev. Lett.100(2), 023902 (2008). [CrossRef] [PubMed]
  18. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007). [CrossRef] [PubMed]
  19. D. C. Skigin and R. A. Depine, “Transmission Resonances of Metallic Compound Gratings with Subwavelength Slits,” Phys. Rev. Lett.95(21), 217402 (2005). [CrossRef] [PubMed]
  20. F. Villa and J. A. Gaspar-Armenta, “Electromagnetic surface waves: photonic crystal-photonic crystal interface,” Opt. Commun.223(1-3), 109–115 (2003). [CrossRef]
  21. C.-S. Yuan, H. Tang, C. He, X.-L. Chen, X. Ni, M.-H. Lu, Y.-F. Chen, and N.-B. Ming, “Resonant optical transmission through a one-dimensional photonic crystal adjacent to a thin metal film,” Physica B406(10), 1983–1988 (2011). [CrossRef]
  22. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science308(5721), 534–537 (2005). [CrossRef] [PubMed]
  23. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science315(5819), 1686 (2007). [CrossRef] [PubMed]
  24. H. Y. Dong, J. Wang, and T. J. Cui, “One-way Tamm plasmon polaritons at the interface between magnetophotonic crystals and conducting metal oxides,” Phys. Rev. B87(4), 045406 (2013). [CrossRef]
  25. J. A. Gaspar-Armenta and F. Villa, “Photonic surface-wave excitation: photonic crystal-metal interface,” J. Opt. Soc. Am. B20(11), 2349–2354 (2003). [CrossRef]
  26. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B76(16), 165415 (2007). [CrossRef]
  27. S. Brand, M. A. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B79(8), 085416 (2009). [CrossRef]
  28. C. He, M.-H. Lu, X. Heng, L. Feng, and Y.-F. Chen, “Parity-time electromagnetic diodes in a two-dimensional nonreciprocal photonic crystal,” Phys. Rev. B83(7), 075117 (2011). [CrossRef]
  29. H. Zhou, G. Yang, K. Wang, H. Long, and P. Lu, “Multiple optical Tamm states at a metal-dielectric mirror interface,” Opt. Lett.35(24), 4112–4114 (2010). [CrossRef] [PubMed]
  30. Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express19(19), 18393–18398 (2011). [CrossRef] [PubMed]
  31. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  32. H. A. Macleod, Thin Film Optical Filters (McGraw-Hill, 1989).
  33. A. S. Ramírez-Duverger, J. Gaspar-Armenta, and R. García-Llamas, “Experimental determination of a surface wave at the one-dimensional photonic crystal-metal interface,” J. Opt. Soc. Am. B25(6), 1016–1024 (2008). [CrossRef]
  34. A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,”Phys.- Usp.53(3), 243–256 (2010). [CrossRef]
  35. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Modeling the Flow of Loght (Princeton University Press, 1995).
  36. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited