OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28941–28947

Organic semiconductor distributed feedback (DFB) laser as excitation source in Raman spectroscopy

Xin Liu, Panagiotis Stefanou, Bohui Wang, Thomas Woggon, Timo Mappes, and Uli Lemmer  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28941-28947 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2161 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



As an application of organic semiconductor distributed feedback (DFB) lasers we demonstrate their use as excitation sources in Raman spectroscopy. We employed an efficient small molecule blend, a high quality resonator and a novel encapsulation method resulting in an improved laser output power, a reduced laser line width and an enhanced power stability. Based on theses advances, Raman spectroscopy on selected substances was enabled. Raman spectra of sulfur and cadmium sulfide are presented and compared with the ones excited by a helium-neon laser. We also fabricated a spectrally tunable organic semiconductor DFB laser to optimize the Raman signals for a given optical filter configuration.

© 2013 Optical Society of America

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.7300) Lasers and laser optics : Visible lasers
(300.6450) Spectroscopy : Spectroscopy, Raman
(180.5655) Microscopy : Raman microscopy

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 17, 2013
Manuscript Accepted: October 30, 2013
Published: November 15, 2013

Virtual Issues
Vol. 9, Iss. 1 Virtual Journal for Biomedical Optics

Xin Liu, Panagiotis Stefanou, Bohui Wang, Thomas Woggon, Timo Mappes, and Uli Lemmer, "Organic semiconductor distributed feedback (DFB) laser as excitation source in Raman spectroscopy," Opt. Express 21, 28941-28947 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature121(3048), 501–502 (1928). [CrossRef]
  2. G. Landsberg and L. Mandelstam, “Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen,” Naturwissenschaften16(28), 557–558 (1928). [CrossRef]
  3. J. H. Giles, D. A. Gilmore, and M. B. Denton, “Quantitative analysis using Raman spectroscopy without spectral standardization,” J. Raman Spectrosc.30(9), 767–771 (1999). [CrossRef]
  4. O. Svensson, M. Josefson, and F. W. Langkilde, “Reaction monitoring using Raman spectroscopy and chemometrics,” Chemom. Intell. Lab. Syst.49(1), 49–66 (1999). [CrossRef]
  5. A. Yamada, N. Kojima, K. Takahashi, T. Okamoto, and M. Konagai, “Raman study of epitaxial Ga2Se3 films grown by molecular beam epitaxy,” Jpn. J. Appl. Phys.31(Part 2, No. 2B), L186–L188 (1992). [CrossRef]
  6. T. Jawhari, A. Roid, and J. Casado, “Raman spectroscopic characterization of some commercially available carbon black materials,” Carbon33(11), 1561–1565 (1995). [CrossRef]
  7. S. Nakashima and H. Harima, “Raman investigation of SiC polytypes,” Phys. Status Solidi A.162(1), 39–64 (1997). [CrossRef]
  8. U. Schmidt, S. Hild, W. Ibach, and O. Hollricher, “Characterization of thin polymer films on the nanometer scale with confocal Raman AFM,” Macromol. Symp.230(1), 133–143 (2005). [CrossRef]
  9. I. Nabiev, I. Chourpa, and M. Manfait, “Applications of Raman and surface-enhanced Raman scattering spectroscopy in medicine,” J. Raman Spectrosc.25(1), 13–23 (1994). [CrossRef]
  10. E. E. Lawson, B. W. Barry, A. C. Williams, and H. G. M. Edwards, “Biomedical applications of Raman spectroscopy,” J. Raman Spectrosc.28(2-3), 111–117 (1997). [CrossRef]
  11. L.-P. Choo-Smith, H. G. M. Edwards, H. P. Endtz, J. M. Kros, F. Heule, H. Barr, J. S. Robinson, H. A. Bruining, and G. J. Puppels, “Medical applications of Raman spectroscopy: From proof of principle to clinical implementation,” Biopolymers67(1), 1–9 (2002). [CrossRef] [PubMed]
  12. A. Ramoji, U. Neugebauer, T. Bocklitz, M. Foerster, M. Kiehntopf, M. Bauer, and J. Popp, “Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood,” Anal. Chem.84(12), 5335–5342 (2012). [CrossRef] [PubMed]
  13. F. Adar, R. Geiger, and J. Noonan, “Raman spectroscopy for process/quality control,” Appl. Spectrosc. Rev.32(1-2), 45–101 (1997). [CrossRef]
  14. J. M. Andrade, S. Garriques, M. De la Guardia, M. Gomez-Carracedo, and D. Prada, “Non-destructive and clean prediction of aviation fuel characteristics through Fourier transform-Raman spectroscopy and multivariate calibration,” Anal. Chim. Acta482(1), 115–128 (2003). [CrossRef]
  15. G. Abstreiter, E. Bauser, A. Fischer, and K. Ploog, “Raman spectroscop-A versatile tool for characterization of thin films and heterostructures of GaAs and AlxGa1-xAs,” Appl. Phys. (Berl.)16(4), 345–352 (1978). [CrossRef]
  16. M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett.10(3), 751–758 (2010). [CrossRef] [PubMed]
  17. J. N. Chen, G. Conache, M. E. Pistol, S. M. Gray, M. T. Borgström, H. Xu, H. Q. Xu, L. Samuelson, and U. Håkanson, “Probing strain in bent semiconductor nanowires with Raman spectroscopy,” Nano Lett.10(4), 1280–1286 (2010). [CrossRef] [PubMed]
  18. T. H. Maiman, “Stimulated optical radiation in Ruby,” Nature187(4736), 493–494 (1960). [CrossRef]
  19. I. R. Lewis and H. G. M. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line (CRC, 2001).
  20. D. L. Andrews and A. A. Demidov, An Introduction to Laser Spectroscopy (Plenum, 1995).
  21. F. Hide, M. Diaz-Garcia, B. Schwartz, M. Andersson, and A. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science273(5283), 1833–1836 (1996). [CrossRef]
  22. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev.107(4), 1272–1295 (2007). [CrossRef] [PubMed]
  23. Y. Oki, S. Miyamoto, M. Maeda, and N. J. Vasa, “Multiwavelength distributed-feedback dye laser array and its application to spectroscopy,” Opt. Lett.27(14), 1220–1222 (2002). [CrossRef] [PubMed]
  24. T. Woggon, S. Klinkhammer, and U. Lemmer, “Compact spectroscopy system based on tunable organic semiconductor lasers,” Appl. Phys. B99(1-2), 47–51 (2010). [CrossRef]
  25. S. Klinkhammer, T. Woggon, C. Vannahme, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” Proc. SPIE7722, 77221I (2010). [CrossRef]
  26. V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Foerster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys.84(8), 4096–4108 (1998). [CrossRef]
  27. C. Vannahme, S. Klinkhammer, M. B. Christiansen, A. Kolew, A. Kristensen, U. Lemmer, and T. Mappes, “All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation,” Opt. Express18(24), 24881–24887 (2010). [CrossRef] [PubMed]
  28. O. V. Butrimovich, E. S. Voropai, A. P. Lugovskii, Y. L. Ptashnikov, and M. P. Samtsov, “Mechanisms of photodestruction of 4-dicyano-methylene-2-methyl-6-n-dimethylaminostyryl-4-h-pyran under visible-light,” Opt. Spectrosc.69, 343–345 (1990).
  29. S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett.26(9), 593–595 (2001). [CrossRef] [PubMed]
  30. E. D. Palik, Handbook of Optical Constants of Solids II (Academic, 1991).
  31. A. T. Ward, “Raman spectroscopy of sulfur, sulfur-selenium, and sulfur-arsenic mixtures,” J. Phys. Chem.72(12), 4133–4139 (1968). [CrossRef]
  32. S. N. White, R. M. Dunk, E. T. Peltzer, J. J. Freeman, and P. G. Brewer, “In situ Raman analyses of deep-sea hydrothermal and cold seep systems (Gorda Ridge and Hydrate Ridge),” Geochem. Geophys. Geosyst.7(5), 1–12 (2006). [CrossRef]
  33. D. Himmel, L. C. Maurin, O. Gros, and J.-L. Mansot, “Raman microspectrometry sulfur detection and characterization in the marine ectosymbiotic nematode Eubostrichus dianae (Desmodoridae, Stilbonematidae),” Biol. Cell101(1), 43–54 (2009). [CrossRef] [PubMed]
  34. S. N. White, “Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals,” Chem. Geol.259(3-4), 240–252 (2009). [CrossRef]
  35. S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, and U. Lemmer, “A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation,” Appl. Phys. B97(4), 787–791 (2009). [CrossRef]
  36. C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, “First-order Raman effect in wurtzite-type crystals,” Phys. Rev.181(3), 1351–1363 (1969). [CrossRef]
  37. M. Abdulkhadar and B. Thomas, Nanostruct. “Study of raman spectra of nanoparticles of CdS and ZnS,” Mater.5, 289–298 (1995).
  38. F. X. Gu, H. K. Yu, W. Fang, and L. M. Tong, “Low-threshold supercontinuum generation in semiconductor nanoribbons by continuous-wave pumping,” Opt. Express20(8), 8667–8674 (2012). [CrossRef] [PubMed]
  39. R. T. Downs, (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan. O03–13.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited