OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28948–28959

Optic-null medium: realization and applications

Qiong He, Shiyi Xiao, Xin Li, and Lei Zhou  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28948-28959 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1781 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optic-null medium (ONM), an electromagnetic (EM) space representing optically nothing, has many interesting applications but is difficult to realize practically due to its extreme EM parameters. Here we demonstrate that a holey metallic plate with periodic array of subwavelength apertures can well mimic an ONM. We develop an effective-medium theory to extract the EM parameters of the designed ONM, and employ full-wave simulations to demonstrate its optical functionalities. Microwave experiments, in excellent agreement with full-wave simulations, are performed to illustrate several applications of the ONM, including the radiation cancellation effect and the hyperlensing effect.

© 2013 Optical Society of America

OCIS Codes
(080.2710) Geometric optics : Inhomogeneous optical media
(230.0230) Optical devices : Optical devices
(260.2110) Physical optics : Electromagnetic optics
(260.2065) Physical optics : Effective medium theory
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: September 23, 2013
Revised Manuscript: November 8, 2013
Manuscript Accepted: November 12, 2013
Published: November 15, 2013

Qiong He, Shiyi Xiao, Xin Li, and Lei Zhou, "Optic-null medium: realization and applications," Opt. Express 21, 28948-28959 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  3. Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett.102(25), 253902 (2009). [CrossRef] [PubMed]
  4. Y. Lai, J. Ng, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Illusion optics,” Front. Phys. China5(3), 308–318 (2010). [CrossRef]
  5. H. Y. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett.90(24), 241105 (2007). [CrossRef]
  6. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett.100(6), 063903 (2008). [CrossRef] [PubMed]
  7. W. X. Jiang, T. J. Cui, H. F. Ma, X. Y. Zhou, and Q. Cheng, “Cylindrical-to-plane-wave conversion via embedded optical transformation,” Appl. Phys. Lett.92(26), 261903 (2008). [CrossRef]
  8. Y. Shen, K. Ding, W. Sun, and L. Zhou, “A chirality switching device designed with transformation optics,” Opt. Express18(20), 21419–21426 (2010). [CrossRef] [PubMed]
  9. S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray optics at a deep-subwavelength scale: a transformation optics approach,” Nano Lett.8(12), 4243–4247 (2008). [CrossRef] [PubMed]
  10. A. V. Kildishev and E. E. Narimanov, “Impedance-matched hyperlens,” Opt. Lett.32(23), 3432–3434 (2007). [CrossRef] [PubMed]
  11. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001). [CrossRef] [PubMed]
  12. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004). [CrossRef] [PubMed]
  13. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  14. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-Diffraction-Limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005). [CrossRef] [PubMed]
  15. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011). [CrossRef] [PubMed]
  16. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater.11(5), 426–431 (2012). [CrossRef] [PubMed]
  17. COMSOL Multi-physics 3.5, developed by COMSOL ©, network license (2008).
  18. In our simulations, we tookΔ/b=10000.
  19. Here, we only present the field distributions for TE-polarized excitation since the TM case is quite similar to the TE case.
  20. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B75(15), 155410 (2007). [CrossRef]
  21. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-Near-Zero materials,” Phys. Rev. Lett.97(15), 157403 (2006). [CrossRef] [PubMed]
  22. J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett.100(22), 221903 (2012). [CrossRef]
  23. I. C. Khoo, D. H. Werner, X. Liang, A. Diaz, and B. Weiner, “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Opt. Lett.31(17), 2592–2594 (2006). [CrossRef] [PubMed]
  24. N. M. Litchinitser, A. I. Maimistov, I. R. Gabitov, R. Z. Sagdeev, and V. M. Shalaev, “Metamaterials: electromagnetic enhancement at zero-index transition,” Opt. Lett.33(20), 2350–2352 (2008). [CrossRef] [PubMed]
  25. J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter15(37), 6345–6364 (2003). [CrossRef]
  26. Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell,” Phys. Rev. Lett.102(9), 093901 (2009). [CrossRef] [PubMed]
  27. W. Yan, M. Yan, and M. Qiu, “Generalized compensated bilayer structure from the transformation optics perspective,” J. Opt. Soc. Am. B26(12), 32–35 (2009). [CrossRef]
  28. W. Yan, M. Yan, and M. Qiu, “Generalized nihility media from transformation optics,” J. Opt.13(2), 024005 (2011). [CrossRef]
  29. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science305(5685), 847–848 (2004). [CrossRef] [PubMed]
  30. F. J. García-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surface with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt.7(2), S97–S101 (2005). [CrossRef]
  31. S. Xiao, Q. He, X. Huang, and L. Zhou, “Super imaging with a plasmonic metamaterial: role of aperture shape,” Metamaterials (Amst.)5(2–3), 112–118 (2011). [CrossRef]
  32. J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett.93(22), 227401 (2004). [CrossRef] [PubMed]
  33. Here one can also impose the condition that the two systems exhibit the same transmission properties, although the mathematics are a bit complicated.
  34. CONCERTO 7.0, developed by Vector Fields Ltd, England (2008).
  35. To estimate the working bandwidth, we define the frequencies at which the transmittance of our sample decreases to 0.5 as two boundaries of the working range.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited