OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 28974–28979

Radially realigning nematic liquid crystal for efficient tuning of microring resonators

Tzyy-Jiann Wang, Wan-Jing Li, and Tien-Jung Chen  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 28974-28979 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5596 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The efficient tuning of microring resonator with the radially realigning nematic liquid crystal (NLC) cladding is presented. By applying the voltage on the in-plane annular electrodes, the produced electric field realigns the homeotropically-aligned NLC in the radial direction. Under the voltage sufficient for 90° NLC reorientation, the guided mode senses the consistent cladding index distribution along the microring waveguide with the maximal index change equal to the optical anisotropy of NLC. The resultant tuning of the resonant wavelength has a blue shift of 23.1nm for the TM mode and a red shift of 10.1nm for the TE mode. The tuning rates for the TM and TE modes are −1.95nm/V and 0.90nm/V. The proposed microring resonator owns the excellent features of wide tuning ranges and high tuning rates for the TM and TE modes.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.3710) Materials : Liquid crystals
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: October 10, 2013
Revised Manuscript: November 11, 2013
Manuscript Accepted: November 12, 2013
Published: November 15, 2013

Tzyy-Jiann Wang, Wan-Jing Li, and Tien-Jung Chen, "Radially realigning nematic liquid crystal for efficient tuning of microring resonators," Opt. Express 21, 28974-28979 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express16(19), 14421–14428 (2008). [CrossRef] [PubMed]
  2. G. Lenz and C. K. Madsen, “General optical all-pass filter structures for dispersion control in WDM systems,” J. Lightwave Technol.17(7), 1248–1254 (1999). [CrossRef]
  3. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett.89(7), 071110 (2006). [CrossRef]
  4. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007). [CrossRef]
  5. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005). [CrossRef] [PubMed]
  6. B. Maune, R. Lawson, G. Gunn, A. Scherer, and L. Dalton, “Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers,” Appl. Phys. Lett.83(23), 4689–4691 (2003). [CrossRef]
  7. W. De Cort, J. Beeckman, R. James, F. A. Fernández, R. Baets, and K. Neyts, “Tuning of silicon-on-insulator ring resonators with liquid crystal cladding using the longitudinal field component,” Opt. Lett.34(13), 2054–2056 (2009). [CrossRef] [PubMed]
  8. T. Cai, Q. Liu, Y. Shi, P. Chen, and S. He, “An efficiently tunable microring resonator using a liquid crystal-cladded polymer waveguide,” Appl. Phys. Lett.97(12), 121109 (2010). [CrossRef]
  9. W. De Cort, J. Beeckman, R. James, F. A. Fernandez, R. Baets, and K. Neyts, “Tuning silicon-on-insulator ring resonators with in-plane switching liquid crystals,” J. Opt. Soc. Am. B28(1), 79–85 (2011). [CrossRef]
  10. W. De Cort, J. Beeckman, T. Claes, K. Neyts, and R. Baets, “Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding,” Opt. Lett.36(19), 3876–3878 (2011). [CrossRef] [PubMed]
  11. G. T. Reed, Silicon Photonics: The State of the Art (Wiley, 2008).
  12. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuit (McGraw-Hill, 1985).
  13. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987). [CrossRef]
  14. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron.26(1), 113–122 (1990). [CrossRef]
  15. J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol.1(1), 51–61 (2005). [CrossRef]
  16. T.-J. Wang, S.-C. Yang, T.-J. Chen, and B.-Y. Chen, “Wide tuning of SiN microring resonators by auto-realigning nematic liquid crystal,” Opt. Express20(14), 15853–15858 (2012). [CrossRef] [PubMed]
  17. T.-J. Wang, Y.-H. Huang, and H.-L. Chen, “Resonant-wavelength tuning of microring filters by oxygen plasma treatment,” IEEE Photonics Technol. Lett.17(3), 582–584 (2005). [CrossRef]
  18. Z. Ge, T. X. Wu, R. Lu, X. Zhu, Q. Hong, and S.-T. Wu, “Comprehensive three-dimensional dynamic modeling of liquid crystal devices using finite element method,” J. Disp. Technol.1(2), 194–206 (2005). [CrossRef]
  19. M.-Y. Chen, S.-M. Hsu, and H.-C. Chang, “A finite-difference frequency-domain method for full-vectorial mode solutions of anisotropic optical waveguides with arbitrary permittivity tensor,” Opt. Express17(8), 5965–5979 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited