OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 29000–29005

23 and 39 GHz low phase noise monosection InAs/InP (113)B quantum dots mode-locked lasers

K. Klaime, C. Calò, R. Piron, C. Paranthoen, D. Thiam, T. Batte, O. Dehaese, J. Le Pouliquen, S. Loualiche, A. Le Corre, K. Merghem, A. Martinez, and A. Ramdane  »View Author Affiliations

Optics Express, Vol. 21, Issue 23, pp. 29000-29005 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1201 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Here we report for the first time a passive mode-locking of single section Fabry-Perot (FP) lasers based on InAs quantum dots(QDs) grown on (113)B InP substrate. Devices under study are a 1 and 2 mm long laser diodes emitting around 1.58 µm. Self-starting pulses with repetition rates around 23 and 39 GHz and pulse widths down to 1.5 ps are observed after propagation through a suitable length of single-mode fiber for intracavity dispersion compensation. A RF spectral width as low as 20 kHz has been obtained leading to a low timing jitter RMS.

© 2013 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 20, 2013
Revised Manuscript: September 26, 2013
Manuscript Accepted: September 30, 2013
Published: November 15, 2013

K. Klaime, C. Calò, R. Piron, C. Paranthoen, D. Thiam, T. Batte, O. Dehaese, J. Le Pouliquen, S. Loualiche, A. Le Corre, K. Merghem, A. Martinez, and A. Ramdane, "23 and 39 GHz low phase noise monosection InAs/InP (113)B quantum dots mode-locked lasers," Opt. Express 21, 29000-29005 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett.40(4), 265–267 (2004). [CrossRef]
  2. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007). [CrossRef]
  3. F. X. Kartner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Few-cycle pulses directly from a laser,” Top. Appl. Phys.95, 73–136 (2004). [CrossRef]
  4. E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Yu. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005). [CrossRef]
  5. R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Epitaxial growth of 1.55 µm emitting InAs quantum dashes on InP-based heterostructures by GS-MBE for long-wavelength laser applications,” J. Cryst. Growth251(1-4), 248–252 (2003). [CrossRef]
  6. P. Caroff, N. Bertru, A. Le Corre, O. Dehaese, T. Rohel, I. Alghoraibi, H. Folliot, and S. Loualiche, “Achievement of high density InAs quantum dots on InP (311)B substrate emitting at 1.55 µm,” Jpn. J. Appl. Phys.44(34), L1069–L1071 (2005). [CrossRef]
  7. R. Rosales, S. G. Murdoch, R. T. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, and A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Opt. Express20(8), 8649–8657 (2012). [CrossRef] [PubMed]
  8. M. Dontabactouny, R. Piron, K. Klaime, N. Chevalier, K. Tavernier, S. Loualiche, A. Le Corre, D. Larsson, C. Rosenberg, E. Semenova, and K. Yvind, “41 GHz and 10.6 GHz low threshold and low noise InAs/InP quantum dash two-section mode-locked lasers in L band,” J. Appl. Phys.111(2), 023102 (2012). [CrossRef]
  9. P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett.87(24), 243107 (2005). [CrossRef]
  10. Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun.284(9), 2323–2326 (2011). [CrossRef]
  11. K. Klaime, R. Piron, C. Paranthoen, T. Batte, F. Grillot, O. Dehaese, S. Loualiche, A. Le Corre, R. Rosales, K. Merghem, A. Martinez, and A. Ramdane, “ 20 GHz to 83 GHz single section InAs/InP quantum dot mode-locked lasers grown on (001) misoriented substrate,” IPRM-2012 proceeding, 181–184 (2012).
  12. C. Paranthoen, N. Bertru, O. Dehaese, A. Le Corre, S. Loualiche, B. Lambert, and G. Patriarche, “Height dispersion control of InAs/InP quantum dots emitting at 1.55 μm,” Appl. Phys. Lett.78(12), 1751 (2001). [CrossRef]
  13. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron.29(3), 983–996 (1993). [CrossRef]
  14. D. Eliyahu, R. A. Salvatore, and A. Yariv, “Effect of noise on the power spectrum of passively mode-locked lasers,” J. Opt. Soc. Am. B14(1), 167–174 (1997). [CrossRef]
  15. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B39(4), 201–217 (1986). [CrossRef]
  16. F. Kefelian, S. O'Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF Linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett.20(16), 1405–1407 (2008). [CrossRef]
  17. R. Rosales, K. Merghem, A. Martinez, F. Lelarge, A. Accard, and A. Ramdane, “Timing jitter from the optical spectrum in semiconductor passively mode locked lasers,” Opt. Express20(8), 9151–9160 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited