OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 29006–29012

Efficient burst mode amplifier for ultra-short pulses based on cryogenically cooled Yb3+:CaF2

Jörg Körner, Joachim Hein, Hartmut Liebetrau, Reinhard Seifert, Diethard Klöpfel, Martin Kahle, Markus Loeser, Mathias Siebold, Ulrich Schramm, and Malte C. Kaluza  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 29006-29012 (2013)
http://dx.doi.org/10.1364/OE.21.029006


View Full Text Article

Enhanced HTML    Acrobat PDF (1007 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel approach for the amplification of high peak power femtosecond laser pulses at a high repetition rate. This approach is based on an all-diode pumped burst mode laser scheme. In this scheme, pulse bursts with a total duration between 1 and 2 ms are be generated and amplified. They contain 50 to 2000 individual pulses equally spaced in time. The individual pulses have an initial duration of 350 fs and are stretched to 50 ps prior to amplification. The amplifier stage is based on Yb3+:CaF2 cooled to 100 K. In this amplifier, a total output energy in excess of 600 mJ per burst at a repetition rate of 10 Hz is demonstrated. For lower repetition rates the total output energy per burst can be scaled up to 915 mJ using a longer pump duration. This corresponds to an efficiency as high as 25% of extracted energy from absorbed pump energy. This is the highest efficiency, which has so far been demonstrated for a pulsed Yb3+:CaF2 amplifier.

© 2013 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3280) Lasers and laser optics : Laser amplifiers
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.7090) Lasers and laser optics : Ultrafast lasers
(140.3538) Lasers and laser optics : Lasers, pulsed
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 29, 2013
Revised Manuscript: September 13, 2013
Manuscript Accepted: September 14, 2013
Published: November 15, 2013

Citation
Jörg Körner, Joachim Hein, Hartmut Liebetrau, Reinhard Seifert, Diethard Klöpfel, Martin Kahle, Markus Loeser, Mathias Siebold, Ulrich Schramm, and Malte C. Kaluza, "Efficient burst mode amplifier for ultra-short pulses based on cryogenically cooled Yb3+:CaF2," Opt. Express 21, 29006-29012 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-29006


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Patton, K. N. Gabet, N. Jiang, W. R. Lempert, and J. A. Sutton, “Multi-kHz mixture fraction imaging in turbulent jets using planar Rayleigh scattering,” Appl. Phys. B106(2), 457–471 (2012). [CrossRef]
  2. P. P. Wu and R. B. Miles, “High-energy pulse-burst laser system for megahertz-rate flow visualization,” Opt. Lett.25(22), 1639–1641 (2000). [CrossRef] [PubMed]
  3. B. S. Thurow, A. Satija, and K. Lynch, “Third-generation megahertz-rate pulse burst laser system,” Appl. Opt.48(11), 2086–2093 (2009). [CrossRef] [PubMed]
  4. M. Lapczyna, K. P. Chen, P. R. Herman, H. W. Tan, and R. S. Marjoribanks, “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses,” Appl. Phys., A Mater. Sci. Process.69(7), 883–886 (1999). [CrossRef]
  5. W. Hu, Y. Shin, and G. King, “Modeling of multi-burst mode pico-second laser ablation for improved material removal rate,” Appl. Phys., A Mater. Sci. Process.98(2), 407–415 (2010). [CrossRef]
  6. R. Knappe, H. Haloui, A. Seifert, A. Weis, and A. Nebel, “Scaling ablation rates for picosecond lasers using burst micromachining,” Proc. SPIE7585, 75850H (2010). [CrossRef]
  7. I. Will, H. I. Templin, S. Schreiber, and W. Sandner, “Photoinjector drive laser of the FLASH FEL,” Opt. Express19(24), 23770–23781 (2011). [CrossRef] [PubMed]
  8. F. Fuest, M. J. Papageorge, W. R. Lempert, and J. A. Sutton, “Ultrahigh laser pulse energy and power generation at 10 kHz,” Opt. Lett.37(15), 3231–3233 (2012). [CrossRef] [PubMed]
  9. M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, “Quasi-continuous burst-mode laser for high-speed planar imaging,” Opt. Lett.37(8), 1346–1348 (2012). [CrossRef] [PubMed]
  10. S. Breitkopf, A. Klenke, T. Gottschall, H. J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “58 mJ burst comprising ultrashort pulses with homogenous energy level from an Yb-doped fiber amplifier,” Opt. Lett.37(24), 5169–5171 (2012). [CrossRef] [PubMed]
  11. H. Kalaycıoğlu, Y. B. Eldeniz, Ö. Akçaalan, S. Yavaş, K. Gürel, M. Efe, and F. Ö. Ilday, “1 mJ pulse bursts from a Yb-doped fiber amplifier,” Opt. Lett.37(13), 2586–2588 (2012). [CrossRef] [PubMed]
  12. M. Schulz, R. Riedel, A. Willner, S. Düsterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Pulsed operation of a high average power Yb:YAG thin-disk multipass amplifier,” Opt. Express20(5), 5038–5043 (2012). [CrossRef] [PubMed]
  13. F. Druon, S. Ricaud, D. N. Papadopoulos, A. Pellegrina, P. Camy, J. L. Doualan, R. Moncorge, A. Courjaud, E. Mottay, and P. Georges, “On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance [Invited],” Opt. Mater. Express1(3), 489–502 (2011). [CrossRef]
  14. V. Jambunathan, J. Koerner, P. Sikocinski, M. Divoky, M. Sawicka, A. Lucianetti, J. Hein, and T. Mocek, “Spectroscopic characterization of various Yb3+ doped laser materials at cryogenic temperatures for the development of high energy class diode pumped solid state lasers,” Proc. SPIE8780, 87800G (2013). [CrossRef]
  15. V. Petit, P. Camy, J. L. Doualan, X. Portier, and R. Moncorge, “Spectroscopy of Yb3+: CaF2: From isolated centers to clusters,” Phys. Rev. B78(8), 085131 (2008). [CrossRef]
  16. J. Koerner, C. Vorholt, H. Liebetrau, M. Kahle, D. Kloepfel, R. Seifert, J. Hein, and M. C. Kaluza, “Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 degrees C and 200 degrees C and predictions on their influence on laser performance,” J. Opt. Soc. Am. B29(9), 2493–2502 (2012). [CrossRef]
  17. M. Siebold, M. Loeser, J. Koerner, M. Wolf, J. Hein, C. Wandt, K. Klingebiel, S. Karsch, and U. Schramm, “Efficiency, Energy, and Power Scaling of Diode-Pumped, Short-Pulse Laser Amplifiers Using Yb-Doped Gain Media,” in ASSP Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AWB19. [CrossRef]
  18. J. Körner, J. Hein, H. Liebetrau, M. Kahle, R. Seifert, D. Klöpfel, and M. C. Kaluza, “Diode-pumped, cryogenically cooled, femtosecond burst mode laser,” Proc. SPIE8780, 878008 (2013). [CrossRef]
  19. G. Cheriaux, P. Rousseau, F. Salin, J. P. Chambaret, B. Walker, and L. F. Dimauro, “Aberration-free stretcher design for ultrashort-pulse amplification,” Opt. Lett.21(6), 414–416 (1996). [CrossRef] [PubMed]
  20. J. Körner, V. Jambunathan, J. Hein, R. Seifert, M. Loeser, M. Siebold, U. Schramm, P. Sikocinski, A. Lucianetti, T. Mocek, and M. Kaluza, “Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures,” Appl. Phys. B, (submitted) (2013).
  21. A. Pugzlys, G. Andriukaitis, A. Baltuska, L. Su, J. Xu, H. Li, R. Li, W. J. Lai, P. B. Phua, A. Marcinkevicius, M. E. Fermann, L. Giniūnas, R. Danielius, and S. Alisauskas, “Multi-mJ, 200-fs, cw-pumped, cryogenically cooled, Yb,Na:CaF2 amplifier,” Opt. Lett.34(13), 2075–2077 (2009). [CrossRef] [PubMed]
  22. S. Ricaud, F. Druon, D. N. Papadopoulos, P. Camy, J. L. Doualan, R. Moncorgé, M. Delaigue, Y. Zaouter, A. Courjaud, P. Georges, and E. Mottay, “Short-pulse and high-repetition-rate diode-pumped Yb:CaF2 regenerative amplifier,” Opt. Lett.35(14), 2415–2417 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited