OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 29013–29024

Demonstration of active routing of entanglement in a multi-user network

I. Herbauts, B. Blauensteiner, A. Poppe, T. Jennewein, and H. Hübel  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 29013-29024 (2013)
http://dx.doi.org/10.1364/OE.21.029013


View Full Text Article

Enhanced HTML    Acrobat PDF (1085 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We implement an entanglement distribution network based on wavelength-multiplexing and optical switching for quantum communication applications. Using a high-brightness source based on spontaneous parametric down-conversion in periodically-poled lithium niobate waveguides, we generate polarisation entangled photon pairs with a broad spectrum covering the telecom wavelengths around 1550 nm. The photon pairs have entanglement fidelities up to 99%, and are distributed via passive wavelength multiplexing in a static multi-user network. We furthermore demonstrate a possible network application in a scenario with a single centralised source dynamically allocating two-party entanglement to any pair of users by means of optical switches. The whole system, from the pump laser up to the receivers, is fibre and waveguide based, resulting in maximal stability, minimal losses and the advantage of readily integrable telecom components in the 1550 nm range.

© 2013 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(060.4265) Fiber optics and optical communications : Networks, wavelength routing
(060.5565) Fiber optics and optical communications : Quantum communications
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

History
Original Manuscript: August 15, 2013
Revised Manuscript: September 20, 2013
Manuscript Accepted: September 21, 2013
Published: November 15, 2013

Citation
I. Herbauts, B. Blauensteiner, A. Poppe, T. Jennewein, and H. Hübel, "Demonstration of active routing of entanglement in a multi-user network," Opt. Express 21, 29013-29024 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-29013


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys.84, 777–838 (2012). [CrossRef]
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002). [CrossRef]
  3. A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett.98, 230501 (2007). [CrossRef] [PubMed]
  4. T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R. H. Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance entanglement-based quantum key distribution over optical fiber,” Opt. Express16, 19118–19126 (2008). [CrossRef]
  5. A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Loruenser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “A fully automated entanglement-based quantum cryptography system for telecom fiber networks,” New J. Phys.11, 085002 (2009). [CrossRef]
  6. T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X.-S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution with entangled states,” New J. Phys.11, 085002 (2009). [CrossRef]
  7. M. P. Peloso, I. Gerhardt, C. Ho, A. Lamas-Linares, and C. Kurtsiefer, “Daylight operation of a free space, entanglement-based quantum key distribution system,” New J. Phys.11, 045007 (2009). [CrossRef]
  8. M. Peev, C. Pacher, R. Alleaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fuerst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Laenger, M. Legre, R. Lieger, J. Lodewyck, T. Loruenser, N. Luetkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” New J. Phys.11, 075001 (2009). [CrossRef]
  9. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legre, S. Robyr, P. Trinkler, L. Monat, J. B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Laenger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express19, 10387–10409 (2011). [CrossRef] [PubMed]
  10. M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59, 1829–1834 (1999). [CrossRef]
  11. H. Buhrman, R. Cleve, and W. Van Dam, “Quantum entanglement and communication complexity,” Siam Journal on Computing30, 1829–1841 (2001). [CrossRef]
  12. ITU-T recommendation G.694.2 (2003).
  13. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995). [CrossRef] [PubMed]
  14. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electronics Lett.37, 26–28 (2001). [CrossRef]
  15. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Express31, 1905–1907 (2006).
  16. S. X. Wang and G. S. Kanter, “Robust multiwavelength all-fiber source of polarization-entangled photons with built-in analyzer alignment signal,” IEEE Journal of selected topics in quantum electronics15, 1733–1740 (2009). [CrossRef]
  17. Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A75, 023803 (2007). [CrossRef]
  18. E. Meyer-Scott, V. Roy, J.-P. Bourgoin, B. L. Higgins, L. K. Shalm, and T. Jennewein, “Generating polarization-entangled photon pairs using cross-spliced birefringent fibers,” Opt. Express21, 6205–6212 (2012). [CrossRef]
  19. E. Y. Zhu, Z. Tang, L. Qian, L. G. Helt, M. Liscidini, J. E. Sipe, C. Corbari, A. Canagasabey, M. Ibsen, and P. G. Kazansky, “Direct generation of polarization-entangled photon pairs in a poled fiber,” Phys. Rev. Lett.108(2012). [CrossRef]
  20. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Broadband source of telecom-band polarization-entangled photon-pairs for wavelength-multiplexed entanglement distribution,” Opt. Express16, 16052–16057 (2008). [CrossRef] [PubMed]
  21. A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarisation-entangled photon pairs at 1500 nm using two PPLN waveguides,” Electronics Lett.39, 621–622 (2003). [CrossRef]
  22. H. Huebel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Loruenser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express15, 7853–7862 (2007). [CrossRef]
  23. B. Qi, W. Zhu, L. Qian, and H.-K. Lo, “Feasibility of quantum key distribution through a dense wavelength division multiplexing network,” New J. Phys.12, 103042 (2010). [CrossRef]
  24. R. E. Warburton, M. Itzler, and G. S. Buller, “Free-running, room temperature operation of an InGaAs/InP single-photon avalanche diode,” Appl. Phys. Lett.94, 071116 (2009). [CrossRef]
  25. Z. Yan, D. R. Hamel, A. K. Heinrichs, X. Jiang, M. A. Itzler, and T. Jennewein, “An ultra-low noise telecom wavelength free running single photon detector using negative feedback avalanche diode,” Rev. Sci. Instrum.83, 073105 (2012). [CrossRef]
  26. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16, 3032–3040 (2008). [CrossRef] [PubMed]
  27. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nature Photonics7, 210–214 (2013). [CrossRef]
  28. M. Hentschel, H. Hübel, A. Poppe, and A. Zeilinger, “Three-color Sagnac source of polarization-entangled photon pairs,” Opt. Express17, 23153–23159 (2009). [CrossRef]
  29. F. Steinlechner, P. Trojek, M. Jofre, H. Weier, D. Perez, T. Jennewein, R. Ursin, J. Rarity, M. W. Mitchell, J. P. Torres, H. Weinfurter, and V. Pruneri, “A high-brightness source of polarization-entangled photons optimized for applications in free space,” Opt. Express20, 9640–9649 (2012). [CrossRef] [PubMed]
  30. M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, “Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals,” Opt. Express15, 7479–7488 (2007). [CrossRef] [PubMed]
  31. D. James, P. Kwiat, W. Munro, and A. White, “Measurement of qubits,” Phys. Rev. A64, 052312 (2001). [CrossRef]
  32. C. Bennett, G. Brassard, and N. Mermin, “Quantum Cryptography without Bell theorem,” Phys. Rev. Lett.68, 557–559 (1992). [CrossRef] [PubMed]
  33. J. Ghalbouni, I. Agha, R. Frey, E. Diamanti, and I. Zaquine, “Experimental wavelength-division-multiplexed photon-pair distribution,” Optics Lett.38, 34–36 (2013). [CrossRef]
  34. A. Yoshizawa and H. Tsuchida, “Violation of Bell’s inequality in 1550 nm band without subtraction of accidental coincidences,” Japanese Journal of applied Physics44, L375–L377 (2005). [CrossRef]
  35. Y.-K. Jiang and A. Tomita, “Highly efficient polarization-entangled photon source using periodically poled lithium niobate waveguides,” Opt. Commun.267, 278–281 (2006). [CrossRef]
  36. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide,” Opt. Express16, 12460–12468 (2008). [CrossRef] [PubMed]
  37. S. Arahira, N. Namekata, T. Kishimoto, H. Yaegashi, and S. Inoue, “Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ(2)processes in a periodically poled LiNbO3ridge waveguide,” Opt. Express19, 16032–16043 (2011). [CrossRef] [PubMed]
  38. Z.-Y. Zhou, Y.-K. Jiang, D.-S. Ding, B.-S. Shi, and G.-C. Guo, “Actively switchable nondegenerate polarization-entangled photon-pair distribution in dense wave-division multiplexing,” Phys. Rev. A87, 045806 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited