OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 29065–29072

Acceleration of computation of φ-polynomials

Ilhan Kaya and Jannick Rolland  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 29065-29072 (2013)
http://dx.doi.org/10.1364/OE.21.029065


View Full Text Article

Enhanced HTML    Acrobat PDF (1084 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The benefits of making an effective use of impressive computational power offered by multi-core platforms are investigated for the computation of φ-polynomials used in the description of freeform surfaces. Specifically, we devise parallel algorithms based upon the recurrence relations of both Zernike polynomials and gradient orthogonal Q-polynomials and implement these parallel algorithms on Graphical Processing Units (GPUs) respectively. The results show that more than an order of magnitude improvement is achieved in computational time over a sequential implementation if these recurrence-based parallel algorithms are adopted in the computation of the φ-polynomials.

© 2013 Optical Society of America

OCIS Codes
(200.4960) Optics in computing : Parallel processing
(220.0220) Optical design and fabrication : Optical design and fabrication

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: September 4, 2013
Revised Manuscript: November 1, 2013
Manuscript Accepted: November 9, 2013
Published: November 15, 2013

Citation
Ilhan Kaya and Jannick Rolland, "Acceleration of computation of φ-polynomials," Opt. Express 21, 29065-29072 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-29065


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Fuerschbach, J. P. Rolland, and K. P. Thompson, “A new family of optical systems employing φ-polynomial surfaces,” Opt. Express19(22), 21919–21928 (2011). [CrossRef] [PubMed]
  2. O. Cakmakci, S. Vo, K. P. Thompson, and J. P. Rolland, “Application of radial basis functions to shape description in a dual-element off-axis eyewear display: Field-of-view limit,” SID16, 1089–1098 (2008).
  3. O. Cakmakci, K. Thompson, P. Vallee, J. Cote, and J. P. Rolland, “Design of a freeform single-element head-worn display,” Proc. SPIE7618, 761803 (2010). [CrossRef]
  4. J. C. Miñano, P. Benitez, and A. Santamaria, “Freeform optics for illumination,” Opt. Rev.16(2), 99–102 (2009). [CrossRef]
  5. F. Zernike, “Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode,” Physica1(7–12), 689–704 (1934). [CrossRef]
  6. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  7. G. W. Forbes, “Characterizing the shape of freeform optics,” Opt. Express20(3), 2483–2499 (2012). [CrossRef] [PubMed]
  8. O. Cakmakci, B. Moore, H. Foroosh, and J. P. Rolland, “Optimal local shape description for rotationally non-symmetric optical surface design and analysis,” Opt. Express16(3), 1583–1589 (2008). [CrossRef] [PubMed]
  9. I. Kaya and J. P. Rolland, “Hybrid RBF and local phi-polynomial freeform surfaces,” Adv. Opt. Technol.2(1), 81–88 (2013).
  10. R. W. Gray, C. Dunn, K. P. Thompson, and J. P. Rolland, “An analytic expression for the field dependence of Zernike polynomials in rotationally symmetric optical systems,” Opt. Express20(15), 16436–16449 (2012). [CrossRef]
  11. I. Kaya, K. P. Thompson, and J. P. Rolland, “Comparative assessment of freeform polynomials as optical surface descriptions,” Opt. Express20(20), 22683–22691 (2012). [CrossRef] [PubMed]
  12. G. W. Forbes, “Fitting freeform shapes with orthogonal bases,” Opt. Express21(16), 19061–19081 (2013). [CrossRef] [PubMed]
  13. C. L. Phillips, J. A. Anderson, and S. C. Glotzer, “Pseudo-random number generation for Brownian dynamics and dissipative particle dynamics simulations on GPU devices,” J. Comput. Phys.230(19), 7191–7201 (2011). [CrossRef]
  14. Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt.18(2), 026002 (2013). [CrossRef] [PubMed]
  15. S. Liu, P. Li, and Q. Luo, “Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit,” Opt. Express16(19), 14321–14329 (2008). [CrossRef] [PubMed]
  16. G. W. Forbes, “Robust and fast computation for the polynomials of optics,” Opt. Express18(13), 13851–13862 (2010). [CrossRef] [PubMed]
  17. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, 1972), Chap. 22.
  18. NVIDIA, CUDA C Programming Guide (NVIDIA, 2012).
  19. NVIDIA, CUDA C Best Practices Guide, (NVIDIA, 2012).
  20. Intel, “Intel core 7 processor specifications” (Intel, 2013), http://www.intel.com/content/www/us/en/processors/core/core-i7-processor/Corei7Specifications.html .
  21. C. W. Clenshaw, “A note on the summation of Chebyshev series,” Math. Tables Other Aids Comput.9, 118–120 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited