OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29083–29089

Two-photon laser-assisted device alteration in silicon integrated-circuits

Keith A. Serrels, Kent Erington, Dan Bodoh, Carl Farrell, Neel Leslie, Theodore R. Lundquist, Praveen Vedagarbha, and Derryck T. Reid  »View Author Affiliations

Optics Express, Vol. 21, Issue 24, pp. 29083-29089 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2066 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optoelectronic imaging of integrated-circuits has revolutionized device design debug, failure analysis and electrical fault isolation; however modern probing techniques like laser-assisted device alteration (LADA) have failed to keep pace with the semiconductor industry’s aggressive device scaling, meaning that previously satisfactory techniques no longer exhibit a sufficient ability to localize electrical faults, instead casting suspicion upon dozens of potential root-cause transistors. Here, we introduce a new high-resolution probing technique, two-photon laser-assisted device alteration (2pLADA), which exploits two-photon absorption (TPA) to provide precise three-dimensional localization of the photo-carriers injected by the TPA process, enabling us to implicate individual transistors separated by 100 nm. Furthermore, we illustrate the technique's capability to reveal speed-limiting transistor switching evolution with an unprecedented timing resolution approaching <10 ps. Together, the exceptional spatial and temporal resolutions demonstrated here now make it possible to extend optical fault localization to sub-14 nm technology nodes.

© 2013 Optical Society of America

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(320.7090) Ultrafast optics : Ultrafast lasers
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Integrated Optics

Original Manuscript: June 20, 2013
Manuscript Accepted: October 20, 2013
Published: November 18, 2013

Keith A. Serrels, Kent Erington, Dan Bodoh, Carl Farrell, Neel Leslie, Theodore R. Lundquist, Praveen Vedagarbha, and Derryck T. Reid, "Two-photon laser-assisted device alteration in silicon integrated-circuits," Opt. Express 21, 29083-29089 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Sanchez, R. Desplats, F. Beaudoin, P. Perdu, S. Dudit, G. Woods, and D. Lewis, “NIR laser stimulation for dynamic timing analysis” ASM International Symposium for Testing and Failure Analysis – 31st Annual, ASM International, San Jose (2005), p. 106–114. [CrossRef]
  2. M. R. Bruce, V. J. Bruce, D. H. Eppes, J. Wilcox, E. I. Cole, Jr., P. Tangyunyong, and C. F. Hawkins, “Soft defect localization (SDL) in ICs” ASM International Symposium for Testing and Failure Analysis - 28th Annual, ASM International, Phoenix, AZ (2002), p. 21–27.
  3. J. Rowlette and T. Eiles, “Critical timing analysis in microprocessors using near-IR laser assisted device alteration” ITC International Test Conference, IEEE, Charlotte, NC (2003), Vol. 1, pp. 264–273. [CrossRef]
  4. K. B. Erington, J. Asquith, and D. Bodoh, “Software enhanced time resolved laser assisted device alteration with a non-pulsed laser source” ASM International Symposium for Testing and Failure Analysis - 35th Annual, ASM International, San Jose, CA, 43–51 (2002).
  5. F. Beaudoin, R. Desplats, M. Leibowitz, P. Perdu, P. Vedagarbha, and K. R. Wilsher, “Spatial and Temporal Laser Assisted Fault Localization” US Patent #6,967,491 (2005).
  6. A. Douin, V. Pouget, M. De Matos, D. Lewis, P. Perdu, and P. Fouillat, “Time-resolved imaging using synchronous picosecond photoelectric laser stimulation,” Microelectron. Reliab.46(9-11), 1514–1519 (2006). [CrossRef]
  7. C. Farrell, K. A. Serrels, T. R. Lundquist, P. Vedagarbha, and D. T. Reid, “Octave-spanning super-continuum from a silica photonic crystal fiber pumped by a 386 MHz Yb:fiber laser,” Opt. Lett.37(10), 1778–1780 (2012). [CrossRef] [PubMed]
  8. J. S. Melinger, S. Buchner, D. McMorrow, W. J. Stapor, T. R. Weatherford, A. B. Campbell, and H. Eisen, “Critical Evaluation of the Pulsed Laser Method for Single Event Effects Testing and Fundamental Studies,” IEEE Trans. Nucl. Sci.41(6), 2574–2584 (1994). [CrossRef]
  9. S. C. Moss, S. D. LaLumondiere, J. R. Scarpulla, K. P. MacWilliams, W. R. Crain, and R. Koga, “Correlation of picosecond laser-induced latch-up and energetic particle-induced latch-up in CMOS test structures,” IEEE Trans. Nucl. Sci.42(6), 1948–1956 (1995). [CrossRef]
  10. D. Lewis, V. Pouget, F. Beaudoin, P. Perdu, H. Lapuyade, P. Fouillat, and A. Touboul, “Backside laser testing of IC’s for SET sensitivity evaluation,” IEEE Trans. Nucl. Sci.48(6), 2193–2201 (2001). [CrossRef]
  11. S. Buchner and J. Howard, JrC. Poivey, D. McMorrow, and R. Pease, “Pulsed-laser testing methodology for single event transients in linear devices,” IEEE Trans. Nucl. Sci.51(6), 3716 (2004). [CrossRef]
  12. A. Douin, V. Pouget, F. Darracq, D. Lewis, P. Fouillat, and P. Perdu, “Influence of laser pulse duration in single event upset testing,” IEEE Trans. Nucl. Sci.53(4), 1799 (2006). [CrossRef]
  13. V. Pouget, A. Douin, D. Lewis, P. Fouillat, G. Foucard, P. Peronnard, V. Maingot, J. B. Ferron, L. Anghel, R. Leveugle, and R. Velazco, “Tools and methodology development for pulsed laser fault injection in SRAM-based FPGAs” 8th Latin-American Test Workshop (LATW), (2007).
  14. V. Pouget, A. Douin, G. Foucard, P. Peronnard, D. Lewis, P. Fouillat, and R. Velazco, “Dynamic testing of an SRAM-based FPGA by time-resolved laser fault injection” 14th IEEE International On-Line Testing Symposium, 295–301 (2008). [CrossRef]
  15. D. McMorrow, W. T. Lotshaw, J. S. Melinger, S. Buchner, and R. L. Pease, “Subbandgap laser-induced single event effects: Carrier generation via two-photon absorption,” IEEE Trans. Nucl. Sci.49(6), 3002–3008 (2002). [CrossRef]
  16. D. McMorrow, W. T. Lotshaw, J. S. Melinger, S. Buchner, Y. Boulghassoul, L. W. Massengill, and R. Pease, “Three dimensional mapping of single-event effects using two-photon absorption,” IEEE Trans. Nucl. Sci.50(6), 2199–2207 (2003). [CrossRef]
  17. K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nat. Photonics2(5), 311–314 (2008). [CrossRef]
  18. K. A. Serrels, E. Ramsay, and D. T. Reid, “70nm resolution in subsurface optical imaging of silicon integrated-circuits using pupil-function engineering,” Appl. Phys. Lett.94(7), 073113 (2009). [CrossRef]
  19. K. A. Serrels, C. Farrell, T. R. Lundquist, D. T. Reid, and P. Vedagarbha, “Solid-immersion-lens-enhanced nonlinear frequency-variation mapping of a silicon integrated-circuit,” Appl. Phys. Lett.99(19), 193103 (2011). [CrossRef]
  20. K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O’Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton.2, 1 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited