OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29109–29119

Reconstruction of dynamical pulse trains via time-resolved multiheterodyne detection

T. Butler, B. Tykalewicz, D. Goulding, B. Kelleher, G. Huyet, and S. P. Hegarty  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29109-29119 (2013)
http://dx.doi.org/10.1364/OE.21.029109


View Full Text Article

Enhanced HTML    Acrobat PDF (1177 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A multiheterodyne technique is presented which can accurately measure the complex spectrum and temporally reconstruct certain dynamic pulse trains. This technique is applied to periodic pulses formed in a LiNb03 Mach Zehnder modulator. The spectral amplitude and phase of 20 GHz 66% return-to-zero (RZ) pulses and 10 GHz 50% RZ pulses are measured, and compared to independent measurements from a high resolution optical spectrum analyser. The temporal pulse shape and phase is reconstructed and compared to high speed sampling oscilloscope measurements. This technique is applied to sections of a large single acquisition, allowing the reconstruction of frequency and amplitude modulated pulse trains.

© 2013 Optical Society of America

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Ultrafast Optics

History
Original Manuscript: July 9, 2013
Revised Manuscript: September 7, 2013
Manuscript Accepted: September 10, 2013
Published: November 18, 2013

Citation
T. Butler, B. Tykalewicz, D. Goulding, B. Kelleher, G. Huyet, and S. P. Hegarty, "Reconstruction of dynamical pulse trains via time-resolved multiheterodyne detection," Opt. Express 21, 29109-29119 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29109


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon.1, 308–437, (2009). [CrossRef]
  2. Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform generation and characterization using spectral line-by-line control,” J. Lightwave Technol.24(7), 2487–2494, (2006). [CrossRef]
  3. C. Dorrer and I. Kang, “Simultaneous temporal characterization of telecommunication optical pulses and modulators by use of spectrograms,” Opt. Lett.27, 1315–1317, (2002) [CrossRef]
  4. A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B.43, 103001, (2010). [CrossRef]
  5. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B11(11), 2206–2215, (1995). [CrossRef]
  6. C. Iaconis and I. Walmsley, “Spectral phase interferometry for direct electric-field recdonstruction of ultrashort optical pulses.” Opt. Lett.23(10), 792–794, (1998). [CrossRef]
  7. N. Rebrova, T. Habruseva, G. Huyet, and S. P. Hegarty, “Stabilization of a passively mode-locked laser by continuous wave optical injection,” Appl. Phys. Lett. (97)(10), 101105, (2010). [CrossRef]
  8. Y. Li, L. F. Lester, D. Chang, C. Langrock, M. M. Fejer, and D. J. Kane, “Characteristics and instabilities of mode-locked quantum-dot diode lasers,” Opt. Express (21)(7), 8007–8017 (2013). [CrossRef] [PubMed]
  9. J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett.37(14), 2874–2876 (2012). [CrossRef] [PubMed]
  10. J. R. Freeman, J. Maysonnave, H. E. Beere, D. A. Ritchie, J. Tignon, and S. S. Dhillon, “Electric field sampling of modelocked pulses from a quantum cascade laser,” Opt. Express21(13), 16162–16169 (2013). [CrossRef] [PubMed]
  11. D. Derickson, Fiber Optic Test and Measurement (Prentice-Hall, 1998), Chap. 5.
  12. D. A. Reid, S. G. Murdoch, and L. P. Barry, “Stepped-heterodyne optical complex spectrum analyzer,” Opt. Express18(19), 19724–19731 (2010). [CrossRef] [PubMed]
  13. J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne detection for spectral compression and downconversion of arbitrary periodic optical signals,” J. Lightwave. Technol.29(20), 3091–3098 (2011). [CrossRef]
  14. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett.27(9), 766–768 (2002). [CrossRef]
  15. Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Phot.1(8), 463–467, (2007). [CrossRef]
  16. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Phot.3(6), 351–356,(2009) [CrossRef]
  17. T. Healy, F. C. G. Gunning, A. D. Ellis, and J. D. Bull, “Multi-wavelength source using low drive-voltage amplitude modulators for optical communications,” Opt. Express15, 2981–2986 (2007). [CrossRef] [PubMed]
  18. N.K. Fontaine, D. J. Geisler, R. P. Scott, and S. J. B. Yoo, “Simultaneous and self-referenced amplitude and phase measurement of two frequency combs using multi-heterodyne spectroscopy,” Optical Fiber Communication Conference, OSA Technical Digest, OW1C.1. (2012).
  19. A. Klee, J. Davila-Rodriguez, C. Williams, and P.J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalised multiheterodyne detection,” IEEE J. Sel. Top. Quant.19(4), 1100711 (2013). [CrossRef]
  20. P. J. Winzer, C. Dorrer, R. -J. Essiambre, and I. Kang, “Chirped return-to-zero modulation by imbalanced pulse carver driving signals,” IEEE Phot. Tech. Lett.16(5), 1279–1381 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited