OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29165–29178

Efficient second harmonic generation using nonlinear substrates patterned by nano-antenna arrays

Doron Bar-Lev and Jacob Scheuer  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29165-29178 (2013)
http://dx.doi.org/10.1364/OE.21.029165


View Full Text Article

Enhanced HTML    Acrobat PDF (1315 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study theoretically various design considerations for efficient generation of second harmonic using a nonlinear substrate patterned with nano-antennas. The analysis is focused on a gap Bowtie nano-antenna array recessed in LiNbO3 which is shown to be preferable over on surface structures due to field enhancement, field profile and linear and non-linear polarization considerations. In addition, we develop the nano-antenna counterpart of the Boyd-Klienmann model in order to analyze the impact of a Gaussian shaped fundamental beam on the generated second harmonic. Finally, we show that the dielectric properties of the substrate lead to preferable directions for the incident fundamental harmonic and the emission of the second harmonic. Our analyses lead to several design rules which can enhance second and high harmonic generation from nano-antennas arrays by several orders of magnitude.

© 2013 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices
(240.6680) Optics at surfaces : Surface plasmons
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 3, 2013
Revised Manuscript: October 17, 2013
Manuscript Accepted: October 17, 2013
Published: November 18, 2013

Citation
Doron Bar-Lev and Jacob Scheuer, "Efficient second harmonic generation using nonlinear substrates patterned by nano-antenna arrays," Opt. Express 21, 29165-29178 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29165


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011). [CrossRef]
  2. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1(3), 438–483 (2009). [CrossRef]
  3. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett.70(11), 1354–1356 (1997). [CrossRef]
  4. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nano-antennas,” Phys. Rev. Lett.94(1), 017402 (2005). [CrossRef] [PubMed]
  5. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nano-antennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004). [CrossRef]
  6. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007). [CrossRef]
  7. J. Scheuer, “Ultra-high enhancement of the field concentration in Split Ring Resonators by azimuthally polarized excitation,” Opt. Express19(25), 25454–25464 (2011). [CrossRef] [PubMed]
  8. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90(1), 013903 (2003). [CrossRef] [PubMed]
  9. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  10. S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453(7196), 757–760 (2008). [CrossRef] [PubMed]
  11. K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint., “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett.11(1), 61–65 (2011). [CrossRef] [PubMed]
  12. K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin, “Enhanced second-harmonic generation from double resonant plasmonic antennae,” Opt. Express20(12), 12860–12865 (2012). [CrossRef] [PubMed]
  13. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett.98(2), 026104 (2007). [CrossRef] [PubMed]
  14. S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett.9(11), 3801–3804 (2009). [CrossRef] [PubMed]
  15. A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett.83(24), 5041–5043 (2003). [CrossRef]
  16. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett.101, 116805 (2008).
  17. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  18. F. B. P. Niesler, N. Feth, S. Linden, J. Niegemann, J. Gieseler, K. Busch, and M. Wegener, “Second-harmonic generation from split-ring resonators on a GaAs substrate,” Opt. Lett.34(13), 1997–1999 (2009). [CrossRef] [PubMed]
  19. W. Fan, S. Zhang, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Second harmonic generation from patterned GaAs inside a subwavelength metallic hole array,” Opt. Express14(21), 9570–9575 (2006). [CrossRef] [PubMed]
  20. W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,” Nano Lett.6(5), 1027–1030 (2006). [CrossRef]
  21. M. A. Vincenti, D. de Ceglia, V. Roppo, and M. Scalora, “Harmonic generation in metallic, GaAs-filled nanocavities in the enhanced transmission regime at visible and UV wavelengths,” Opt. Express19(3), 2064–2078 (2011). [CrossRef] [PubMed]
  22. E. H. Barakat, M. P. Bernal, and F. I. Baida, “Second harmonic generation enhancement by use of annular aperture arrays embedded into silver and filled by lithium niobate,” Opt. Express18(7), 6530–6536 (2010). [CrossRef] [PubMed]
  23. M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A82(4), 043828 (2010). [CrossRef]
  24. S. Park, J. W. Hahn, and J. Y. Lee, “Doubly resonant metallic nanostructure for high conversion efficiency of second harmonic generation,” Opt. Express20(5), 4856–4870 (2012). [CrossRef] [PubMed]
  25. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Technol.47(11), 2075–2084 (1999). [CrossRef]
  26. J. Berthelot, G. Bachelier, M. Song, P. Rai, G. Colas des Francs, A. Dereux, and A. Bouhelier, “Silencing and enhancement of second-harmonic generation in optical gap antennas,” Opt. Express20(10), 10498–10508 (2012). [CrossRef] [PubMed]
  27. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys.39(8), 3597–3639 (1968). [CrossRef]
  28. F. D. T. D. Solutions, Release. 8.0, www.lumerical.com .
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  30. D. F. Nelson and R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys.45(8), 3688–3689 (1974). [CrossRef]
  31. C. A. Balanis, Antenna Theory Analysis and Design, 3rd ed. (Wiley, 2005).
  32. Y. Yifat, Z. Iluz, D. Bar-Lev, M. Eitan, Y. Hanein, A. Boag, and J. Scheuer, “High load sensitivity in wideband infrared dual-Vivaldi nanoantennas,” Opt. Lett.38(2), 205–207 (2013). [CrossRef] [PubMed]
  33. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics2(5), 307–310 (2008). [CrossRef]
  34. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  35. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).
  36. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University, 2007)
  37. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed. (Prentice-Hall, 2009).
  38. T. Volk and M. Wohlecke, Lithium Niobate—Defects, Photorefraction and Ferroelectric Switching (Springer, 2008).
  39. A. Sommerfeld, “Über die ausbreitung der wellen in der drahtlosen telegraphie,” Ann. Phys.333(4), 665–736 (1909). [CrossRef]
  40. M. Kominami, D. M. Pozar, and D. H. Schaubert, “Dipole and slot elements and arrays on semi-infinite substrates,” IEEE Trans. Antenn. Propag.33(6), 600–607 (1985). [CrossRef]
  41. R. C. Compton, R. C. McPhedran, Z. Popovic, G. M. Rebeiz, P. P. Tong, and D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antenn. Propag.35(6), 622–631 (1987). [CrossRef]
  42. F. J. González and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol.46(5), 418–428 (2005). [CrossRef]
  43. Y. Yifat, Z. Iluz, M. Eitan, I. Friedler, Y. Hanein, A. Boag, and J. Scheuer, “Quantifying the radiation efficiency of nano antennas,” Appl. Phys. Lett.100(11), 111113 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited