OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29205–29216

Minimized speckle noise in lens-less holographic projection by pixel separation

Michal Makowski  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29205-29216 (2013)
http://dx.doi.org/10.1364/OE.21.029205


View Full Text Article

Enhanced HTML    Acrobat PDF (3660 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Images displayed by holographic methods on phase-only light modulators inevitably suffer from speckle noise. It is partly caused by multiple uncontrolled interferences between laser light rays forming adjacent pixels of the image while having a random phase state. In this work the experimental proof of concept of an almost speckle-less projection method is presented, which assumes introducing a spatial separation of the image pixels, thus eliminating the spurious interferences. A single displayed sub-frame consists of separated light spots of very low intensity error. The sub-frames with different sampling offsets are then displayed sequentially to produce a non-fragmented color final image.

© 2013 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(090.2870) Holography : Holographic display
(090.1705) Holography : Color holography
(090.5694) Holography : Real-time holography

ToC Category:
Holography

History
Original Manuscript: September 13, 2013
Revised Manuscript: October 15, 2013
Manuscript Accepted: October 23, 2013
Published: November 18, 2013

Citation
Michal Makowski, "Minimized speckle noise in lens-less holographic projection by pixel separation," Opt. Express 21, 29205-29216 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29205


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Buckley, “Real-time error diffusion for signal-to-noise ratio improvement in a holographic projection system,” J. Disp. Technol.7, 70–76 (2011). [CrossRef]
  2. H. Nakayama, N. Takada, Y. Ichihashi, S. Awazu, T. Shimobaba, N. Masuda, and T. Ito, “Real-time color electroholography using multiple graphics processing units and multiple high-definition liquid-crystal display panels,” Appl. Opt.49(31), 5993–5996 (2010). [CrossRef]
  3. E. Buckley, “Holographic laser projection,” J. Disp. Technol.7(3), 135–140 (2011). [CrossRef]
  4. M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk, “Simple holographic projection in color,” Opt. Express20(22), 25130–25136 (2012). [CrossRef] [PubMed]
  5. Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” J. Opt. Soc. Am. A27(8), 1812–1817 (2010). [CrossRef] [PubMed]
  6. J. G. Manni and J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Opt. Express20(10), 11288–11315 (2012). [CrossRef] [PubMed]
  7. M. Makowski, I. Ducin, M. Sypek, A. Siemion, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Color image projection based on Fourier holograms,” Opt. Lett.35(8), 1227–1229 (2010). [CrossRef] [PubMed]
  8. Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express19(8), 7567–7579 (2011). [CrossRef] [PubMed]
  9. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik35, 237–246 (1972).
  10. T. Peter, F. Wyrowski, and O. Bryngdhal, “Importance of initial distribution for iterative calculation of quantized diffractive elements,” J. Mod. Opt.40(4), 591–600 (1993). [CrossRef]
  11. A. Czerwiński, K. Kakarenko, M. Sypek, M. Makowski, I. Ducin, J. Suszek, A. Kolodziejczyk, and J. Bomba, “Modeling of the optical system illuminated by quasi-monochromatic spatially incoherent light: New numerical approach,” Opt. Lett.37(22), 4723–4725 (2012). [CrossRef] [PubMed]
  12. M. Sypek, “Light propagation in the Fresnel region. New numerical approach,” Opt. Commun.116(1-3), 43–48 (1995). [CrossRef]
  13. M. Oikawa, T. Shimobaba, T. Yoda, H. Nakayama, A. Shiraki, N. Masuda, and T. Ito, “Time-division color electroholography using one-chip RGB LED and synchronizing controller,” Opt. Express19(13), 12008–12013 (2011). [CrossRef] [PubMed]
  14. T. D. Wilkinson, “Ferroelectric liquid crystal over silicon devices,” Liq. Cryst. Today21(2), 34–41 (2012). [CrossRef]
  15. M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikuła, and J. Suszek, “Iterative design of multi-plane holograms: experiments and applications,” Opt. Eng.46(4), 045802 (2007). [CrossRef]
  16. M. Makowski, I. Ducin, K. Kakarenko, A. Kolodziejczyk, A. Siemion, A. Siemion, J. Suszek, M. Sypek, and D. Wojnowski, “Efficient image projection by Fourier electroholography,” Opt. Lett.36(16), 3018–3020 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited