OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29217–29222

Visible light guidance in silica capillaries by antiresonant reflection

Patrik Rugeland, Carola Sterner, and Walter Margulis  »View Author Affiliations

Optics Express, Vol. 21, Issue 24, pp. 29217-29222 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1695 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Hollow silica capillaries are examined as optical waveguides evaluating the antiresonant reflecting optical waveguide (ARROW) effect by sequentially reducing the wall thickness through etching and measuring the optical transmission. It is found that the periodicity of the transmission bands is proportional to the wall thickness and that the propagation loss is of the order of a few dB/m.

© 2013 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 12, 2013
Revised Manuscript: October 31, 2013
Manuscript Accepted: November 8, 2013
Published: November 18, 2013

Patrik Rugeland, Carola Sterner, and Walter Margulis, "Visible light guidance in silica capillaries by antiresonant reflection," Opt. Express 21, 29217-29222 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986). [CrossRef]
  2. Y. Kokubun, T. Baba, T. Sakaki, and K. Iga, “Low-loss antiresonant reflecting optical waveguide on Si substrate in visible-wavelength region,” Electron. Lett.22(17), 892–893 (1986). [CrossRef]
  3. F. Prieto, A. Llobera, D. Jiménez, C. Doménguez, A. Calle, and L. M. Lechuga, “Design and analysis of silicon antiresonant reflecting optical waveguides for evanescent field sensor,” J. Lightwave Technol.18(7), 966–972 (2000). [CrossRef]
  4. T. Baba, Y. Kokubun, T. Sakaki, and K. Iga, “Loss reduction of an ARROW waveguide in shorter wavelength and its stack configuration,” J. Lightwave Technol.6(9), 1440–1445 (1988). [CrossRef]
  5. J. M. Kubica, J. Gazecki, and G. K. Reeves, “Multimode operation of ARROW waveguides,” Opt. Commun.102(3,4), 217–220 (1993).
  6. D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Waveguide loss optimization in hollow-core ARROW waveguides,” Opt. Express13(23), 9331–9336 (2005). [CrossRef] [PubMed]
  7. C. H. Lai, B. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express18(1), 309–322 (2010). [CrossRef] [PubMed]
  8. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express18(22), 23133–23146 (2010). [CrossRef] [PubMed]
  9. E. Nguema, D. Férachou, G. Humbert, J.-L. Auguste, and J.-M. Blondy, “Broadband terahertz transmission within the air channel of thin-wall pipe,” Opt. Lett.36(10), 1782–1784 (2011). [CrossRef] [PubMed]
  10. T. Hikada, T. Morikawa, and J. Shimada, “Hollow-core oxide-glass cladding optical fibers for middle infrared region,” J. Appl. Phys.52(7), 4467–4471 (1981). [CrossRef]
  11. Y. Matsuura, R. Kasahara, T. Katagiri, and M. Miyagi, “Hollow infrared fibers fabricated by glass-drawing technique,” Opt. Express10(12), 488–492 (2002). [CrossRef] [PubMed]
  12. A. Mazhorova, A. Markov, B. Ung, M. Rozé, S. Gorgutsa, and M. Skorobogatiy, “Thin chalcogenide capillaries as efficient waveguides from mid-IR to terahertz,” J. Opt. Soc. Am. B29(8), 2116–2123 (2012). [CrossRef]
  13. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am.68(9), 1196–1201 (1978). [CrossRef]
  14. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core Omniguide fibers,” Opt. Express9(13), 748–779 (2001). [CrossRef] [PubMed]
  15. G. Vienne, Y. Xu, C. Jakobsen, H. J. Deyerl, J. B. Jensen, T. Sorensen, T. P. Hansen, Y. Huang, M. Terrel, R. K. Lee, N. A. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, “Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports,” Opt. Express12(15), 3500–3508 (2004). [CrossRef] [PubMed]
  16. C. Baskiotis, Y. Quiquempois, M. Douay, and P. Sillard, “Leakage loss analytical formulas for large-core-low-refractive-index-contrast Bragg fibers,” J. Opt. Soc. Am. B30(7), 1945–1953 (2013). [CrossRef]
  17. A. Baz, G. Bouwmans, L. Bigot, and Y. Quiquempois, “Pixelated high-index ring Bragg fibers,” Opt. Express20(17), 18795–18802 (2012). [CrossRef] [PubMed]
  18. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett.27(18), 1592–1594 (2002). [CrossRef] [PubMed]
  19. P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express13(20), 8277–8285 (2005). [CrossRef] [PubMed]
  20. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett.31(24), 3574–3576 (2006). [CrossRef] [PubMed]
  21. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express15(20), 12680–12685 (2007). [CrossRef] [PubMed]
  22. S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express18(5), 5142–5150 (2010). [CrossRef] [PubMed]
  23. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express19(2), 1441–1448 (2011). [CrossRef] [PubMed]
  24. W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express21(19), 21912–21917 (2013). [CrossRef] [PubMed]
  25. M. Miyagi and S. Nishida, “Transmission characteristics of dielectric tube leaky waveguide,” IEEE. Trans. Microw. Theory and Technol.28(6), 536–541 (1980). [CrossRef]
  26. J.-L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol.11(3), 416–423 (1993). [CrossRef]
  27. F. Poletti, J. R. Hayes, and D. J. Richardson, “Optimising the performances of hollow antiresonant fibres,” ECOC 2011, paper Mo.2.LeCervin.2 (2011).
  28. R. Romaniuk, “Capillary optical fiber – design, fabrication, characterization and application,” Bulletin of Polish Academy of Science, Technical Sciences56(2), 87–102 (2008).
  29. M. Borecki, M. Korwin-Pawłowski, and M. Beblowska, “Light transmission characteristics of silica capillaries,” Proc. SPIE6347, 634715 (2006). [CrossRef]
  30. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007). [CrossRef]
  31. M. Borecki, M. L. K. Pawlowski, M. Beblowska, and A. Jakubowski, “Short capillary tubing as fiber optic sensor of viscosity of liquids,” Proc. SPIE6585, 65851G (2007). [CrossRef]
  32. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43(4), 1783–1809 (1964). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited