OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29223–29230

Second and third order dispersion generation using nonlinearly chirped silicon waveguide gratings

G. F. R. Chen, T. Wang, C. Donnelly, and D. T. H. Tan  »View Author Affiliations

Optics Express, Vol. 21, Issue 24, pp. 29223-29230 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1059 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The simultaneous generation of second and third order dispersion is demonstrated using nonlinearly chirped silicon waveguide gratings. The nonlinearly chirped gratings are designed to generate varying signs and magnitudes of group velocity dispersion and dispersion slope. The design, fabrication, and experimental characterization of the silicon waveguide gratings are performed. Second order dispersion as high as −2.3 X 106 ps/nm/km and third order dispersion as high as 1.2 X 105 ps/nm2/km and as low as 1.2 X 104 ps/nm2/km is demonstrated at 1.55µm.

© 2013 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(130.2035) Integrated optics : Dispersion compensation devices

ToC Category:
Integrated Optics

Original Manuscript: September 24, 2013
Revised Manuscript: November 4, 2013
Manuscript Accepted: November 5, 2013
Published: November 18, 2013

G. F. R. Chen, T. Wang, C. Donnelly, and D. T. H. Tan, "Second and third order dispersion generation using nonlinearly chirped silicon waveguide gratings," Opt. Express 21, 29223-29230 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, 2006).
  2. J. F. McMillan, M. Yu, D. L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express18(15), 15484–15497 (2010). [CrossRef] [PubMed]
  3. J. B. Driscoll, N. Ophir, R. R. Grote, J. I. Dadap, N. C. Panoiu, K. Bergman, and R. M. Osgood, “Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration,” Opt. Express20(8), 9227–9242 (2012). [CrossRef] [PubMed]
  4. D. T. H. Tan, P. C. Sun, and Y. Fainman, “Monolithic nonlinear pulse compressor on a silicon chip,” Nat. Commun.1(8), 116 (2010). [CrossRef] [PubMed]
  5. D. T. H. Tan, “Optical pulse compression on a silicon chip – Effect of group velocity dispersion and free carriers,” Appl. Phys. Lett.101(21), 211112 (2012). [CrossRef]
  6. L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. Agarwal, L. C. Kimerling, J. Michel, and A. E. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” IEEE J. Sel. Top. Quantum Electron.18(6), 1799–1806 (2012). [CrossRef]
  7. D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, K. Raj, J. E. Cunningham, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects,” Opt. Express19(3), 2401–2409 (2011). [CrossRef] [PubMed]
  8. M. Nakazawa, T. Yamamoto, and K. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett.36(24), 2027–2029 (2000). [CrossRef]
  9. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  10. M. Miyagi and S. Nishida, “Pulse spreading in a single-mode fiber due to third-order dispersion,” Appl. Opt.18(5), 678–682 (1979). [CrossRef] [PubMed]
  11. K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, and K. Takiguchi, “Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion,” Opt. Lett.19(17), 1314–1316 (1994). [CrossRef] [PubMed]
  12. F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett.31(11), 899–901 (1995). [CrossRef]
  13. S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, “Tunable dispersion slope compensator with a chirped fiber grating and a divided thin-film heater for 160-Gb/s RZ transmissions,” IEEE Photonics Technol. Lett.16(4), 1095–1097 (2004). [CrossRef]
  14. P. I. Reyes, N. Litchinitser, M. Sumetsky, and P. S. Westbrook, “160-Gb/s tunable dispersion slope compensator using a chirped fiber Bragg grating and a quadratic heater,” IEEE Photonics Technol. Lett.17(4), 831–833 (2005). [CrossRef]
  15. M. Ibsen and R. Feced, “Fiber Bragg gratings for pure dispersion-slope compensation,” Opt. Lett.28(12), 980–982 (2003). [CrossRef] [PubMed]
  16. M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second-and third-order dispersion compensation,” Electron. Lett.33(22), 1891–1893 (1997). [CrossRef]
  17. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express14(9), 3853–3863 (2006). [CrossRef] [PubMed]
  18. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express14(10), 4357–4362 (2006). [CrossRef] [PubMed]
  19. I.-W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express14(25), 12380–12387 (2006). [CrossRef] [PubMed]
  20. L. Yin, Q. Lin, and G. P. Agrawal, “Dispersion tailoring and soliton propagation in silicon waveguides,” Opt. Lett.31(9), 1295–1297 (2006). [CrossRef] [PubMed]
  21. M. D. Marko, X. Li, J. Zheng, J. Liao, M. Yu, G.-Q. Lo, D.-L. Kwong, C. A. Husko, and C. W. Wong, “Phase-resolved observations of optical pulse propagation in chip-scale silicon nanowires,” Appl. Phys. Lett.103(2), 021103 (2013). [CrossRef]
  22. H.-C. Kim, K. Ikeda, and Y. Fainman, “Resonant waveguide device with vertical gratings,” Opt. Lett.32(5), 539–541 (2007). [CrossRef] [PubMed]
  23. S. Zamek, D. T. H. Tan, M. Khajavikhan, M. Ayache, M. P. Nezhad, and Y. Fainman, “Compact chip-scale filter based on curved waveguide Bragg gratings,” Opt. Lett.35(20), 3477–3479 (2010). [CrossRef] [PubMed]
  24. A. Grieco, B. Slutsky, D. T. H. Tan, S. Zamek, M. P. Nezhad, and Y. Fainman, “Optical bistability in a silicon waveguide distributed Bragg reflector Fabry–Pérot resonator,” J. Lightwave Technol.30(14), 2352–2355 (2012). [CrossRef]
  25. X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express20(14), 15547–15558 (2012). [CrossRef] [PubMed]
  26. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997). [CrossRef]
  27. D. T. H. Tan, K. Ikeda, and Y. Fainman, “Cladding-modulated Bragg gratings in silicon waveguides,” Opt. Lett.34(9), 1357–1359 (2009). [CrossRef] [PubMed]
  28. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  29. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett.87(25), 253902 (2001). [CrossRef] [PubMed]
  30. L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Analysis and engineering of chromatic dispersion in silicon waveguide bends and ring resonators,” Opt. Express19(9), 8102–8107 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited