OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29240–29248

Transmission ellipsometric method without an aperture for simple and reliable evaluation of electro-optic properties

Toshiki Yamada and Akira Otomo  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29240-29248 (2013)
http://dx.doi.org/10.1364/OE.21.029240


View Full Text Article

Enhanced HTML    Acrobat PDF (1279 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A transmission ellipsometric method has been reformed without a spatial filtering aperture to characterize electro-optic (EO) performance of EO polymers. This method affords much simpler optical setup compared to the reflection method, and lets us easily perform detailed incident angle dependence measurements using a conventional glass substrate and an un-collimated beam. It is demonstrated that the reliable characterization with this method is possible in combination with a simple data analysis. By using the recently matured deposition technique of indium zinc oxide (IZO) on soft materials, it is possible to prepare the EO polymer sandwiched between two transparent electrodes. Thus the transmission method should be re-evaluated.

© 2013 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(160.2100) Materials : Electro-optical materials
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(230.2090) Optical devices : Electro-optical devices

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 27, 2013
Revised Manuscript: November 7, 2013
Manuscript Accepted: November 12, 2013
Published: November 18, 2013

Citation
Toshiki Yamada and Akira Otomo, "Transmission ellipsometric method without an aperture for simple and reliable evaluation of electro-optic properties," Opt. Express 21, 29240-29248 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29240


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett.70(25), 3335–3337 (1997). [CrossRef]
  2. Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficient,” Nat. Photonics1(3), 180–185 (2007). [CrossRef]
  3. C.-Y. Lin, A. X. Wang, B. S. Lee, X. Zhang, and R. T. Chen, “High dynamic range electric field sensor for electromagnetic pulse detection,” Opt. Express19(18), 17372–17377 (2011). [CrossRef] [PubMed]
  4. R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low V π L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express18(15), 15618–15623 (2010). [CrossRef] [PubMed]
  5. L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: State of the Art and future prospects,” Chem. Rev.110(1), 25–55 (2010). [CrossRef] [PubMed]
  6. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett.56(18), 1734–1736 (1990). [CrossRef]
  7. J. S. Schildkraut, “Determination of the electrooptic coefficient of a poled polymer film,” Appl. Opt.29(19), 2839–2841 (1990). [CrossRef] [PubMed]
  8. Y. Shuto and M. Amano, “Reflection measurement technique of electro-optic coefficients in lithium niobate crystals and poled polymer films,” J. Appl. Phys.77(9), 4632–4638 (1995). [CrossRef]
  9. V. Dentan, Y. Lévy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptical properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun.69(5–6), 379–383 (1989). [CrossRef]
  10. S. Herminghaus, B. A. Smith, and J. D. Swalen, “Electro-optic coefficients in electric-field-poled polymer waveguides,” J. Opt. Soc. Am. B8(11), 2311–2317 (1991). [CrossRef]
  11. H. Uchiki and T. Kobayashi, “New determination method of electro‐optic constants and relevant nonlinear susceptibilities and its application to doped polymer,” J. Appl. Phys.64(5), 2625–2629 (1988). [CrossRef]
  12. Ph. Prêtre, L.-M. Wu, R. A. Hill, and A. Knoesen, “Characterization of electro-optic polymer films by use of decal-deposited reflection Fabry Perot microcavities,” J. Opt. Soc. Am. B15(1), 379–392 (1998). [CrossRef]
  13. K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, R. B. Comizzoli, H. E. Katz, and M. L. Schilling, “Electro‐optic phase modulation and optical second‐harmonic generation in corona‐poled polymer films,” Appl. Phys. Lett.53(19), 1800–1802 (1988). [CrossRef]
  14. R. A. Norwood, M. G. Kuzyk, and R. A. Keosian, “Electro-optic tensor ratio determination of side-chain copolymers with electro-optic interferometry,” J. Appl. Phys.75(4), 1869–1874 (1994). [CrossRef]
  15. D. H. Park, C. H. Lee, and W. N. Herman, “Analysis of multiple reflection effects in reflective measurements of electro-optic coefficients of poled polymers in multilayer structures,” Opt. Express14(19), 8866–8884 (2006). [CrossRef] [PubMed]
  16. J. A. Davies, A. Elangovan, P. A. Sullivan, B. C. Olbricht, D. H. Bale, T. R. Ewy, C. M. Isborn, B. E. Eichinger, B. H. Robinson, P. J. Reid, X. Li, and L. R. Dalton, “Rational enhancement of second-order nonlinearity: bis-(4-methoxyphenyl)hetero-aryl-amino donor-based chromophores: design, synthesis, and electrooptic activity,” J. Am. Chem. Soc.130(32), 10565–10575 (2008). [CrossRef] [PubMed]
  17. D. H. Park, J. Luo, A. K.-Y. Jen, and W. N. Herman, “Simplified reflection Fabry-Perot method for determination of electro-optic coefficients of poled polymer thin films,” Polymers3(4), 1310–1324 (2011). [CrossRef]
  18. C. Greenlee, A. Guilmo, A. Opadeyi, R. Himmelhuber, R. A. Norwood, M. Fallahi, J. Luo, S. Huang, X.-H. Zhou, A. K.-Y. Jen, and N. Peyghambarian, “Mach-Zehnder interferometry method for decoupling electro-optic and piezoelectric effects in poled polymer films,” Appl. Phys. Lett.97(4), 041109 (2010). [CrossRef]
  19. Y. Levy, M. Dumont, E. Chastaing, P. Robin, P. A. Chollet, G. Gadret, and F. Kajzar, “Reflection method for electro-optical coefficient determination in stratified thin film structures,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B4, 1–19 (1993).
  20. P.-A. Chollet, G. Gadret, F. Kajzar, and P. Raimond, “Electro-optic coefficient determination in stratified organized molecular thin films: application to poled polymers,” Thin Solid Films242(1–2), 132–138 (1994). [CrossRef]
  21. F. Michelotti, G. Nicolao, F. Tesi, and M. Bertolotti, “On the measurement of the electro-optic properties of poled side-chain copolymer films with a modified Teng-Man technique,” Chem. Phys.245(1–3), 311–326 (1999). [CrossRef]
  22. B. C. Olbricht, P. A. Sullivan, G.-A. Wen, A. A. Mistry, J. A. Davies, T. R. Ewy, B. E. Eichinger, B. H. Robinson, P. J. Reid, and L. R. Dalton, “Laser-assisted poling of binary chromophore materials,” J. Phys. Chem. C112(21), 7983–7988 (2008). [CrossRef]
  23. X. Piao, X. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers post-functionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. A Polym. Chem.49(1), 47–54 (2011). [CrossRef]
  24. P. M. Lundquist, M. Jurich, J.-F. Wang, H. Zhou, T. J. Marks, and G. K. Wong, “Electro-optical characterization of poled- polymer films in transmission,” Appl. Phys. Lett.69(7), 901–903 (1996). [CrossRef]
  25. S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent developments in top-emitting organic light-emitting diodes,” Adv. Mater.22(46), 5227–5239 (2010). [CrossRef] [PubMed]
  26. Y. Lee, J. Kim, J. N. Jang, I. H. Yang, S. Kwon, M. Hong, D. C. Kim, K. S. Oh, S. J. Yoo, B. J. Lee, and W.-G. Jang, “Development of inverted OLED with top ITO anode by plasma damage-free sputtering,” Thin Solid Films517(14), 4019–4022 (2009). [CrossRef]
  27. J.-A. Jeong, J.-Y. Lee, and H.-K. Kim, “Inverted OLED with low resistance IZO-Ag-IZO anode prepared by linear FTS system at room temperature,” Electrochem. Solid State Lett.12(11), J105–J108 (2009). [CrossRef]
  28. D. G. Jun, H. H. Cho, D. B. Jo, and K. M. Lee, “Fabrication of IZO thin films for flexible organic light emitting diodes by RF magnetron sputtering,” J. Ceram. Process. Res.13, s260–s264 (2012).
  29. T. Yamada, I. Aoki, H. Miki, C. Yamada, and A. Otomo, “Effect of methoxy or benzyloxy groups bound to an amino benzene donor unit for various nonlinear optical chromophores as studied by hyper-Rayleigh scattering,” Mater. Chem. Phys.139(2-3), 699–705 (2013). [CrossRef]
  30. T. Yamada, H. Miki, I. Aoki, and A. Otomo, “Effect of two methoxy groups bound to an amino benzene donor unit for thienyl-di-vinylene bridged EO chromophores,” Opt. Mater.35(12), 2194–2200 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited