OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29255–29268

Analysis of spectral excitation for measurements of fluorescence constituents in natural waters

Alexander Chekalyuk and Mark Hafez  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29255-29268 (2013)
http://dx.doi.org/10.1364/OE.21.029255


View Full Text Article

Enhanced HTML    Acrobat PDF (1626 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Field measurements of chlorophyll-a (Chl), phycoerythrin (PE), chromophoric dissolved organic matter (CDOM), and variable fluorescence (Fv/Fm) in diverse waters of the California Current, Mediterranean Sea and Gulf of Mexico using 375, 405, 510 and 532 nm laser excitation wavelengths (EW) are analyzed. EW = 375 and 405 nm were found more suitable for Chl assessment in high-Chl (> 10 μg/l) waters. Both EW = 532 and 510 nm can be used to efficiently stimulate PE fluorescence for structural characterization of phytoplankton communities. EW = 375 nm and 405 nm can provide best results for CDOM assessments in offshore oceanic waters; the green EWs can be also used for CDOM measurements in fresh and estuarine water types in conjunction with spectral discrimination between CDOM and PE fluorescence. Both EW = 405 and 510 are suitable for photo-physiological Fv/Fm assessments, though using EW = 405 nm may result in underestimation of PE-containing phytoplankton groups present in mixed phytoplankton assemblages.

© 2013 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(140.0140) Lasers and laser optics : Lasers and laser optics
(300.0300) Spectroscopy : Spectroscopy
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: October 4, 2013
Revised Manuscript: November 4, 2013
Manuscript Accepted: November 5, 2013
Published: November 18, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Alexander Chekalyuk and Mark Hafez, "Analysis of spectral excitation for measurements of fluorescence constituents in natural waters," Opt. Express 21, 29255-29268 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29255


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Falkowski and D. A. Kiefer, “Chlorophyll-a fluorescence in phytoplankton - relationship to photosynthesis and biomass,” J. Plankton Res.7(5), 715–731 (1985). [CrossRef]
  2. Y. Z. Yacobi, “From Tswett to identified flying objects: a concise history of chlorophyll a use for quantification of phytoplankton,” Isr. J. Plant Sci.60(1), 243–251 (2012). [CrossRef]
  3. M. J. Doubell, H. Yamazaki, H. Li, and Y. Kokubu, “An advanced laser-based fluorescence microstructure profiler (TurboMAP-L) for measuring bio-physical coupling in aquatic systems,” J. Plankton Res.31(12), 1441–1452 (2009). [CrossRef]
  4. C. W. Proctor and C. S. Roesler, “New insights on obtaining phytoplankton concentration and composition from in situ multispectral chlorophyll fluorescence,” Limnol. Oceanogr. Methods8, 695–708 (2010). [CrossRef]
  5. A. M. Chekalyuk and M. Hafez, “Advanced laser fluorometry of natural aquatic environments,” Limnol. Oceanogr. Methods6, 591–609 (2008). [CrossRef]
  6. A. M. Chekalyuk and M. Hafez, “Photo-physiological variability in phytoplankton chlorophyll fluorescence and assessment of chlorophyll concentration,” Opt. Express19(23), 22643–22658 (2011). [CrossRef] [PubMed]
  7. A. M. Chekalyuk, M. Landry, R. Goericke, A. G. Taylor, and M. Hafez, “Laser fluorescence analysis of phytoplankton across a frontal zone in the California Current ecosystem,” J. Plankton Res.34(9), 761–777 (2012). [CrossRef]
  8. C. S. Yentsch and C. M. Yentsch, “Fluorescence spectral signatures characterization of phytoplankton populations by the use of excitation and emission spectra,” J. Mar. Res.37, 471–483 (1979).
  9. T. J. Cowles, R. A. Desiderio, and S. Neuer, “In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra,” Mar. Biol.115(2), 217–222 (1993). [CrossRef]
  10. H. L. MacIntyre, E. Lawrenz, and T. L. Richardson, “Taxonomic discrimination of phytoplankton by spectral fluorescence” in Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. D. J. Suggett, O. Prasil, and M. A. Borowitzka, eds. (Springer, 2010).
  11. T. L. Richardson, E. Lawrenz, J. L. Pinckney, R. C. Guajardo, E. A. Walker, H. W. Paerl, and H. L. MacIntyre, “Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser,” Water Res.44(8), 2461–2472 (2010). [CrossRef] [PubMed]
  12. P. G. Falkowski and Z. Kolber, “Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans,” Aust. J. Plant Physiol.22(2), 341–355 (1995). [CrossRef]
  13. Z. Kolber and P. G. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr.38(8), 1646–1665 (1993). [CrossRef]
  14. Z. S. Kolber, O. Prasil, and P. G. Falkowski, “Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols,” Biochim. Biophys. Acta1367(1-3), 88–106 (1998). [CrossRef] [PubMed]
  15. M. Y. Gorbunov, P. G. Falkowski, and Z. S. Kolber, “Measurement of photosynthetic parameters in benthic organisms in situ using a SCUBA-based fast repetition rate fluorometer,” Limnol. Oceanogr.45(1), 242–245 (2000). [CrossRef]
  16. T. S. Bibby, M. Y. Gorbunov, K. W. Wyman, and P. G. Falkowski, “Photosynthetic community responses to upwelling in mesoscale eddies in the subtropical North Atlantic and Pacific Oceans,” Deep Sea Res. Part II Top. Stud. Oceanogr.55(10-13), 1310–1320 (2008). [CrossRef]
  17. U. Schreiber, C. Neubauer, and U. Schliwa, “PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: a highly sensitive new tool in basic and applied photosynthesis research,” Photosynth. Res.36(1), 65–72 (1993). [CrossRef]
  18. U. Schreiber, C. Klughammer, and J. Kolbowski, “Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer,” Photosynth. Res.113(1-3), 127–144 (2012). [CrossRef] [PubMed]
  19. R. J. Olson, A. M. Chekalyuk, and H. M. Sosik, “Phytoplankton photosynthetic characteristics from fluorescence induction assays of individual cells,” Limnol. Oceanogr.41(6), 1253–1263 (1996). [CrossRef]
  20. R. J. Olson, H. M. Sosik, and A. M. Chekalyuk, “Photosynthetic characteristics of marine phytoplankton from pump-during-probe fluorometry of individual cells at sea,” Cytometry37(1), 1–13 (1999). [CrossRef] [PubMed]
  21. A. M. Chekalyuk, R. J. Olson, and H. M. Sosik, “Pump-during-probe fluorometry of phytoplankton: group-specific photosynthetic characteristics from individual cell analysis,” Proc. SPIE2963, 840–845 (1997). [CrossRef]
  22. A. M. Chekalyuk, F. E. Hoge, C. W. Wright, and R. N. Swift, “Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics,” Photosynth. Res.66(1-2), 33–44 (2000). [CrossRef] [PubMed]
  23. A. M. Chekalyuk, F. E. Hoge, C. W. Wright, R. N. Swift, and J. K. Yungel, “Airborne test of laser pump-and-probe technique for assessment of phytoplankton photochemical characteristics,” Photosynth. Res.66(1-2), 45–56 (2000). [CrossRef] [PubMed]
  24. M. Raateoja, J. Seppala, and P. Ylostalo, “Fast repetition rate fluorometry is not applicable to studies of filamentous cyanobacteria from the Baltic Sea,” Limnol. Oceanogr.49(4), 1006–1012 (2004). [CrossRef]
  25. S. G. H. Simis, Y. Huot, M. Babin, J. Seppälä, and L. Metsamaa, “Optimization of variable fluorescence measurements of phytoplankton communities with cyanobacteria,” Photosynth. Res.112(1), 13–30 (2012). [CrossRef] [PubMed]
  26. C. E. Del Castillo, P. G. Coble, R. N. Conmy, F. E. Muller-Karger, L. Vanderbloemen, and G. A. Vargo, “Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: documenting the intrusion of the Mississippi River plume in the West Florida Shelf,” Limnol. Oceanogr.46(7), 1836–1843 (2001). [CrossRef]
  27. N. Hudson, A. Baker, and D. Reynolds, “Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters – a review,” River Res. Appl.23(6), 631–649 (2007). [CrossRef]
  28. C. E. Brown and M. F. Fingas, “Review of the development of laser fluorosensors for oil spill application,” Mar. Pollut. Bull.47(9-12), 477–484 (2003). [CrossRef] [PubMed]
  29. H. H. Kim, “New algae mapping technique by the use of an airborne laser fluorosensor,” Appl. Opt.12(7), 1454–1459 (1973). [CrossRef] [PubMed]
  30. U. Gehlhaar, K. P. Gunther, and J. Luther, “Compact and highly sensitive fluorescence lidar for oceanographic measurements,” Appl. Opt.20(19), 3318–3320 (1981). [CrossRef] [PubMed]
  31. M. Bristow, D. Nielsen, D. Bundy, and R. Furtek, “Use of water Raman emission to correct airborne laser fluorosensor data for effects of water optical attenuation,” Appl. Opt.20(17), 2889–2906 (1981). [CrossRef] [PubMed]
  32. S. Babichenko, L. Poryvkina, V. Arikese, S. Kaitala, and H. Kuosa, “Remote sensing of phytoplankton using laser induced fluorescence,” Remote Sens. Environ.45(1), 43–50 (1993). [CrossRef]
  33. F. E. Hoge and R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,” Appl. Opt.20(18), 3197–3205 (1981). [CrossRef] [PubMed]
  34. R. J. Exton, W. M. Houghton, W. E. Esaias, R. C. Harriss, F. H. Farmer, and H. H. White, “Laboratory analysis of techniques for remote sensing of estuarine parameters using laser excitation,” Appl. Opt.22(1), 54–64 (1983). [CrossRef] [PubMed]
  35. K. Ohm, R. Reuter, M. Stolze, and R. Willkomm, “Shipboard oceanographic fluorescence lidar development and evaluation based on measurements in Antarctic waters,” EARSeL Adv. Remote Sens.5, 105–113 (1997).
  36. A. M. Chekalyuk, A. A. Demidov, V. V. Fadeev, and M. Y. Gorbunov, “Lidar monitoring of phytoplankton and organic matter in the inner seas of Europe,” EARSeL Adv.Remote Sens.3, 131–139 (1995).
  37. R. Barbini, F. Colao, R. Fantoni, C. Micheli, A. Palucci, and S. Ribezzo, “Design and application of a lidar fluorosensor system for remote monitoring of phytoplankton monitoring of phytoplankton,” J. Mar. Sci.55, 793–802 (1998).
  38. C. W. Wright, F. E. Hoge, R. N. Swift, J. K. Yungel, and C. R. Schirtzinger, “Next generation NASA airborne oceanographic lidar system,” Appl. Opt.40(3), 336–342 (2001). [CrossRef] [PubMed]
  39. Z. Liu, S. Ma, X. Wang, and Z. Li, “Field detection of chlorophyll-a concentration in the sea surface layer by an airborne oceanographic lidar,” J. Ocean Univ. China7(1), 108–112 (2008). [CrossRef]
  40. D. Mauzerall, “Light-induced fluorescence changes in Chlorella, and the primary photoreactions for the production of oxygen,” Proc. Natl. Acad. Sci. U.S.A.69(6), 1358–1362 (1972). [CrossRef] [PubMed]
  41. A. M. Chekalyuk, “Advanced Laser Fluorometry: new results and developments,” NASA ocean color research team (2010) http://oceancolor.gsfc.nasa.gov/MEETINGS/OCRT_May2010/
  42. J. I. Goes, H. do Rosario Gomes, A. M. Chekalyuk, E. J. Carpenter, J. P. Montoya, V. J. Coles, P. L. Yager, W. M. Berelson, D. G. Capone, R. A. Foster, D. K. Steinberg, A. Subramaniam, and M. A. Hafez, “Influence of Amazon River discharge on the biogeography of phytoplankton communities in the western tropical north Atlantic,” Prog. Oceanogr. (to be published), doi:. [CrossRef]
  43. J. I. Goes, H. do Rosario Gomes, E. Haugen, K. McKee, E. D’Sa, A. M. Chekalyuk, D. Stoecker, P. Stabeno, S. Saitoh, and R. Sambrotto, “Fluorescence, pigment, and microscope characterization of Bering Sea phytoplankton community structure and photosynthetic competency in the presence of a Cold Pool during summer,” Deep Sea Res. (provisionally accepted) (2013).
  44. A. Barnard, A. M. Chekalyuk, A. Derr, W. Strubhar, M. A. Hafez, J. Pearson, C. Orrico, and C. Moore, “Aquatic Laser Fluorescence Analyzer (ALFA): a new instrument for characterization of natural aquatic environments,” AGU 2012 Ocean Sciences Meeting (2012). http://www.sgmeet.com/osm2012/viewabstract2.asp?AbstractID=11217
  45. A. M. Chekalyuk and M. A. Hafez, “Next generation Advanced Laser Fluorometry (ALF) for characterization of natural aquatic environments: new instruments,” Opt. Express21(12), 14181–14201 (2013). [CrossRef] [PubMed]
  46. A. M. Chekalyuk, “Optical analysis of emissions from stimulated liquids,” Patent application WO2013116769 A1 (2013). https://www.google.com/patents/WO2013116760A1?cl=en&dq=WO2013116760+A1&hl=en&sa=X&ei=N9FKUsJ4863gA8n8gcgB&ved=0CDkQ6AEwAA
  47. G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis - the basics,” Annu. Rev. Plant Physiol.42(1), 313–349 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited