OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29277–29282

Liquid crystal alignment on zinc oxide nanowire arrays for LCDs applications

Mu-Zhe Chen, Wei-Sheng Chen, Shie-Chang Jeng, Sheng-Hsiung Yang, and Yueh-Feng Chung  »View Author Affiliations

Optics Express, Vol. 21, Issue 24, pp. 29277-29282 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1392 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The zinc oxide (ZnO) nanowire arrays on the indium tin oxide (ITO) glass substrates were fabricated by using the two-step hydrothermal method. A high transmittance ~92% of ZnO nanowire arrays on ITO substrate in the visible region was obtained. It was observed that the liquid crystal (LC) directors were aligned vertically to the (ZnO) nanowire arrays. The properties of ZnO nanowire arrays as vertical liquid crystal (LC) alignment layers and their applications for hybrid-aligned nematic LC modes were investigated in this work.

© 2013 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices
(160.4236) Materials : Nanomaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Optical Devices

Original Manuscript: September 12, 2013
Revised Manuscript: November 6, 2013
Manuscript Accepted: November 6, 2013
Published: November 19, 2013

Mu-Zhe Chen, Wei-Sheng Chen, Shie-Chang Jeng, Sheng-Hsiung Yang, and Yueh-Feng Chung, "Liquid crystal alignment on zinc oxide nanowire arrays for LCDs applications," Opt. Express 21, 29277-29282 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. V. Kamanina, Features of Liquid Crystal Display Materials and Processes (InTech, 2011).
  2. V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (John Wiley, 2008).
  3. K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, “A new MVA-LCD by polymer sustained alignment technology,” Proc. SID 1200 (2004). [CrossRef]
  4. S. H. Kim and L. C. Chien, “Electro-optical characteristics and morphology of a bend nematic liquid crystal device having templated polymer fibrils,” Jpn. J. Appl. Phys.43(11A), 7643–7647 (2004). [CrossRef]
  5. W. Y. Teng, S. C. Jeng, C. W. Kuo, Y. R. Lin, C. C. Liao, and W. K. Chin, “Nanoparticles-doped guest-host liquid crystal displays,” Opt. Lett.33(15), 1663–1665 (2008). [CrossRef] [PubMed]
  6. W. Y. Teng, S. C. Jeng, J. M. Ding, C. W. Kuo, and W. K. Chin, “Flexible homeotropic liquid crystal displays using low-glass-transition-temperature poly(ethylene terephthalate) substrates,” Jpn. J. Appl. Phys.49(1), 010205 (2010). [CrossRef]
  7. T. Maeda and K. Hiroshima, “Vertically aligned nematic liquid crystal on anodic porous alumina,” Jpn. J. Appl. Phys.43(8A), L1004–L1006 (2004). [CrossRef]
  8. T. Maeda and K. Hiroshima, “Tilted liquid crystal alignment on asymmetrically grooved porous alumina film,” Jpn. J. Appl. Phys.44(26), L845–L847 (2005). [CrossRef]
  9. C. Hong, T. T. Tang, C. Y. Hung, R. P. Pan, and W. Fang, “Liquid crystal alignment in nanoporous anodic aluminum oxide layer for LCD panel applications,” Nanotechnology21(28), 285201 (2010). [CrossRef] [PubMed]
  10. W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, “Metal organic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett.80(22), 4232–4234 (2002). [CrossRef]
  11. L. Y. Chen, S. H. Wu, and Y. T. Yin, “Catalyst-free growth of vertical alignment ZnO nanowire arrays by a two-stage process,” J. Phys. Chem. C113(52), 21572–21576 (2009). [CrossRef]
  12. S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in aqueous solutions,” J. Mater. Chem.12(12), 3773–3778 (2002). [CrossRef]
  13. L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater.15(5), 464–466 (2003). [CrossRef]
  14. T. Y. Olson, A. A. Chernov, B. A. Drabek, J. H. Satcher, and T. Y. J. Han, “Experimental validation of the geometrical selection model for hydrothermally grown zinc oxide nanowire arrays,” Chem. Mater.25(8), 1363–1371 (2013). [CrossRef]
  15. C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett.81(19), 3648–3650 (2002). [CrossRef]
  16. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater.4(6), 455–459 (2005). [CrossRef] [PubMed]
  17. Y. J. Lim, Y. E. Choi, S.-W. Kang, D. Y. Kim, S. H. Lee, and Y.-B. Hahn, “Vertical alignment of liquid crystals with zinc oxide nanorods,” Nanotechnology24(34), 345702 (2013). [CrossRef] [PubMed]
  18. D. C. Iza, D. Muñoz-Rojas, Q. Jia, B. Swartzentruber, and J. L. Macmanus-Driscoll, “Tuning of defects in ZnO nanorod arrays used in bulk heterojunction solar cells,” Nanoscale Res. Lett.7(1), 655 (2012). [CrossRef] [PubMed]
  19. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett.8(5), 1501–1505 (2008). [CrossRef] [PubMed]
  20. Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, and J. H. He, “Antireflection effect of ZnO nanorod arrays,” J. Mater. Chem.20(37), 8134–8138 (2010). [CrossRef]
  21. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A8(3), 549–553 (1991). [CrossRef]
  22. P. K. Samanta, S. K. Patra, A. Ghosh, and P. Roy Chaudhuri, “Visible emission from ZnO nanorods synthesized by simple wet chemical method,” Int. J Nanosci. Nanotech.1, 81–90 (2009).
  23. Y.-H. Ni, X.-W. Wei, J.-M. Hong, and Y. Ye, “Hydrothermal preparation and optical properties of ZnO nanorods,” Mater. Sci. Eng. B121(1–2), 42–47 (2005). [CrossRef]
  24. T. H. Meen, W. Water, Y. S. Chen, W. R. Chen, L. W. Ji, and C. J. Huang, “Growth of ZnO nanorods by hydrothermal method under different temperatures,” in IEEE International Conference on Electron Devices and Solid-State Circuits, Tainan, Taiwan, 20–22 Dec. 2007.
  25. K. Y. Han, T. Miyashita, and T. Uchida, “Accurate determination and measurement error of pretilt angle in liquid crystal cell,” Jpn. J. Appl. Phys.32(2B), L277–L279 (1993). [CrossRef]
  26. E. Lueder, Liquid Crystal Displays: Addressing Schemes and Electro-Optical Effects (Wiley, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited