OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29283–29297

Sensitive test for sea mine identification based on polarization-aided image processing

I. Leonard, A. Alfalou, and C. Brosseau  »View Author Affiliations

Optics Express, Vol. 21, Issue 24, pp. 29283-29297 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4777 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Techniques are widely sought to detect and identify sea mines. This issue is characterized by complicated mine shapes and underwater light propagation dependencies. In a preliminary study we use a preprocessing step for denoising underwater images before applying the algorithm for mine detection. Once a mine is detected, the protocol for identifying it is activated. Among many correlation filters, we have focused our attention on the asymmetric segmented phase-only filter for quantifying the recognition rate because it allows us to significantly increase the number of reference images in the fabrication of this filter. Yet they are not entirely satisfactory in terms of recognition rate and the obtained images revealed to be of low quality. In this report, we propose a way to improve upon this preliminary study by using a single wavelength polarimetric camera in order to denoise the images. This permits us to enhance images and improve depth visibility. We present illustrative results using in situ polarization imaging of a target through a milk-water mixture and demonstrate that our challenging objective of increasing the detection rate and decreasing the false alarm rate has been achieved.

© 2013 Optical Society of America

OCIS Codes
(100.5010) Image processing : Pattern recognition
(110.0113) Imaging systems : Imaging through turbid media
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Image Processing

Original Manuscript: September 18, 2013
Revised Manuscript: October 26, 2013
Manuscript Accepted: October 26, 2013
Published: November 19, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

I. Leonard, A. Alfalou, and C. Brosseau, "Sensitive test for sea mine identification based on polarization-aided image processing," Opt. Express 21, 29283-29297 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Barat and R. Phlypo, “A fully automated method to detect and segment a manufactured object in an underwater color image,” EURASIP J. Adv. Signal Process.2010, 1–11 (2010). [CrossRef]
  2. I. Leonard, “Reconnaissance des objets manufacturés dans des vidéos sous-marines,” Ph. D. thesis, Université de Bretagne Occidentale, (2012).
  3. R. C. Duncan, America’s use of sea mines, White Oak: United States Naval Ordinance Laboratory, 1962.
  4. H. S. Levie, Mine Warfare at Sea (Martinus Nijhoff Publishers, Dordrecht, 1992).
  5. G. K. Hartmann and S. Truver, Weapons that wait: mine warfare in the United States Navy (Naval Institute Press, Annapolis, 1991).
  6. A. Alfalou and C. Brosseau, “Understanding correlation techniques for face recognition: from basics to applications,” in Face Recognition, Milos Oravec (Ed.), ISBN: 978–953–307–060–5, In-Tech (2010).
  7. I. Leonard, A. Arnold-Bos, and A. Alfalou, “Interest of correlation-based automatic target recognition in underwater optical images: theoretical justification and first results,” in Proc. SPIE, 7678, 2010. [CrossRef]
  8. I. Leonard, A. Alfalou, and C. Brosseau, “Spectral optimized asymmetric segmented phase-only correlation filter,” Appl. Opt.51(14), 2638–2650 (2012). [CrossRef] [PubMed]
  9. B. McGlamery, “Computer analysis and simulation of underwater camera system performance,” University of California, San Diego, Scripps Institution of Oceanography, Visibility Laboratory, Technical Report (1975).
  10. A. Morel, “Etude expérimentale de la diffusion de la lumière dans l’eau, les solutions de chlorure de sodium et l’eau de mer optiquement pures,” J. Chem. Phys.10, 1359–1366 (1966).
  11. A. Morel, “Note au sujet des constantes de diffusion de la lumière pour l’eau et l’eau de mer optiquement pures,” Cah. Oceanogr.20, 157–162 (1968).
  12. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys.330(3), 377–445 (1908). [CrossRef]
  13. X. Zhang and L. Hu, “Scattering by pure seawater at high salinity,” Opt. Express17(15), 12685–12691 (2009). [CrossRef] [PubMed]
  14. T. D. Dickey, G. W. Kattawar, and K. J. Voss, “Shedding new light on light in the ocean,” Phys. Today64(4), 44–49 (2011). [CrossRef]
  15. G. W. Kattawar, “Genesis and evolution of polarization of light in the ocean [invited],” Appl. Opt.52(5), 940–948 (2013). [CrossRef] [PubMed]
  16. A. Arnold-Bos, J. Malkasse, and G. Kervern, “Towards a model-free denoising of underwater optical images,” in Proceedings of the IEEE Conference on Ocean (Europe), 2005. [CrossRef]
  17. I. Leonard, A. Arnold-Bos, A. Alfalou, and N. Mandelert, “Improvement of automatic man-made object detection in underwater videos by use of navigational information,” in ICoURS'12, October 2012.
  18. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory10(2), 139–145 (1964). [CrossRef]
  19. B. V. Kumar, “Tutorial survey of composite filter designs for optical correlators,” Appl. Opt.31(23), 4773–4801 (1992). [CrossRef] [PubMed]
  20. J. L. Horner and P. D. Gianino, “Phase-only matched filtering,” Appl. Opt.23(6), 812–816 (1984). [CrossRef] [PubMed]
  21. I. Leonard, A. Alfalou, and C. Brosseau, “Face recognition: based on composite correlation filters: analysis of their performances,” in Face Recognition: Methods, Applications and Technology, A. Quaglia and C. M. Epifano (eds.), Nova Science Publishers, Chap. 3, pp. 57–80 (2012).
  22. J. L. Horner, “Metrics for assessing pattern-recognition performance,” Appl. Opt.31(2), 165–166 (1992). [CrossRef] [PubMed]
  23. S. Sabbah, A. Lerner, C. Erlick, and N. Shashar, “Underwater polarization A physical examination,” Recent Res. Devel. Experimental Theoretical Biol.1, 1–54 (2005).
  24. P. C. Y. Chang, J. C. Flitton, K. I. Hopcraft, E. Jakeman, D. L. Jordan, and J. G. Walker, “Improving visibility depth in passive underwater imaging by use of polarization,” Appl. Opt.42(15), 2794–2803 (2003). [CrossRef] [PubMed]
  25. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).
  26. L. Bartolini, L. De Dominicis, M. Ferride Collibus, G. Fornetti, M. Francucci, M. Guarneri, E. Paglia, C. Poggi, and R. Ricci, “Polarimetry as tool to improve phase measurement in an amplitude modulated laser for submarine archaeological sites inspection,” in Proc. of SPIE, Vol. 6618, 66180I, 2007. [CrossRef]
  27. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(2), 1767–1770 (1994). [CrossRef] [PubMed]
  28. L. F. Rochas-Ochoa, D. Lacoste, R. Lenke, and P. Schurtenberger, andsF. Scheffold, “Depolarization of backscattered linearly polarized light,” J. Opt. Soc. Am. A21(9), 1799–1804 (2004). [CrossRef]
  29. http://www.sealife-cameras.com/fr/cam%C3%A9ras/dc1400-pro-vid%C3%A9o
  30. Y. Piederrière, F. Boulvert, J. Cariou, B. Le Jeune, Y. Guern, and G. Le Brun, “Backscattered speckle size as a function of polarization: influence of particle-size and- concentration,” Opt. Express13(13), 5030–5039 (2005). [CrossRef] [PubMed]
  31. M. Dubreuil, P. Delrot, I. Leonard, A. Alfalou, C. Brosseau, and A. Dogariu, “Exploring underwater target detection by imaging polarimetry and correlation techniques,” Appl. Opt.52(5), 997–1005 (2013). [CrossRef] [PubMed]
  32. J. S. Tyo, M. P. Rowe, E. N. Pugh, and N. Engheta, “Target detection in optically scattering media by polarization-difference imaging,” Appl. Opt.35(11), 1855–1870 (1996). [CrossRef] [PubMed]
  33. D. J. Bogucki, J. A. Domaradzki, D. Stramski, and J. R. Zaneveld, “Comparison of near-forward light scattering on oceanic turbulence and particles,” Appl. Opt.37(21), 4669–4677 (1998). [CrossRef] [PubMed]
  34. M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, A. Bénière, I. Baarstad, T. Løke, P. Kaspersen, X. Normandin, and G. Berginc, “Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection,” Appl. Opt.48(8), 1610–1618 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited