OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29304–29312

Optically anisotropic microlens array film directly formed on a single substrate

Hongwen Ren, Su Xu, Yifan Liu, and Shin-Tson Wu  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29304-29312 (2013)
http://dx.doi.org/10.1364/OE.21.029304


View Full Text Article

Enhanced HTML    Acrobat PDF (5272 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optically anisotropic microlens array film directly formed on a single substrate is demonstrated. UV curable diacrylate monomers are coated as a film on the substrate. Under the action of fringing field, not only the film surface is flattened by the generated dielectric force but also the monomers are reoriented to form a gradient refractive index (GRIN) distribution in the film. Via UV exposure, the GRIN distribution is fixed and the polymeric film behaves as a microlens array. The fabrication process is simple and the film offers a switchable focus through controlling the polarization direction of the incident light. Integrating with a 90° twisted-nematic liquid crystal cell, our polymeric microlens array film shows great potential for switchable 2D/3D autostereoscopic displays.

© 2013 Optical Society of America

OCIS Codes
(120.2040) Instrumentation, measurement, and metrology : Displays
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers
(220.3620) Optical design and fabrication : Lens system design

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: October 4, 2013
Revised Manuscript: November 4, 2013
Manuscript Accepted: November 11, 2013
Published: November 19, 2013

Citation
Hongwen Ren, Su Xu, Yifan Liu, and Shin-Tson Wu, "Optically anisotropic microlens array film directly formed on a single substrate," Opt. Express 21, 29304-29312 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29304


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. J. Woodgate, J. Harrold, A. M. S. Jacobs, R. R. Moseley, and D. Ezra, “Flat panel autostereoscopic displays: characterization and enhancement,” Proc. SPIE3957, 153–164 (2000). [CrossRef]
  2. H. Choi, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Wide-viewing-angle 3D/2D convertible display system using two display devices and a lens array,” Opt. Express13(21), 8424–8432 (2005). [CrossRef] [PubMed]
  3. T. Dekker, S. T. de Zwart, O. H. Willemsen, M. G. H. Hiddink, and W. L. IJzerman, “2D/3D switchable displays,” Proc. SPIE6135, 61350K (2006). [CrossRef]
  4. J. Flack, J. Harrold, and J. Woodgate, “A prototype 3D mobile phone equipped with a next generation autostereoscopic display,” Proc. SPIE6490, 64900M (2007). [CrossRef]
  5. M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” SID J.18(8), 847–855 (2008).
  6. R.-Y. Tsai, C.-H. Tsai, K. Lee, C.-L. Wu, L.-C. D. Lin, K.-C. Huang, W.-L. Hsu, C.-S. Wu, C.-F. Lu, J.-C. Yang, and Y.-C. Chen, “Challenge of 3D LCD displays,” Proc. SPIE7329, 732903 (2009). [CrossRef]
  7. A. Takagi, T. Saishu, M. Kashiwagi, K. Taira, and Y. Hirayama, “Autostereoscopic partial 2-D/3-D switchable display using liquid-crystal gradient index lens,” SID Symp. Dig. 41, 436–439 (2010). [CrossRef]
  8. C. W. Chen, Y. C. Huang, Y. P. Huang, and J. F. Huang, “Fast switching Fresnel liquid crystal lens for autostereoscopic 2D/3D display,” SID Symp. Dig. 41, 428–431 (2010). [CrossRef]
  9. J. Hong, Y. Kim, S. G. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express18(20), 20628–20637 (2010). [CrossRef] [PubMed]
  10. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt.50(34), H87–H115 (2011). [CrossRef] [PubMed]
  11. Y.-K. Lai, Y.-F. Lai, and Y.-C. Chen, “An effective hybrid depth-generation algorithm for 2D-to-3D conversion in 3D displays,” J. Disp. Technol.9(3), 154–161 (2013). [CrossRef]
  12. Y. P. Huang, C. W. Chen, and Y. C. Huang, “Superzone Fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol.8(11), 650–655 (2012). [CrossRef]
  13. J.-H. Na, S.-C. Park, S.-U. Kim, Y. Choi, and S.-D. Lee, “Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode,” Opt. Express20(2), 864–869 (2012). [CrossRef] [PubMed]
  14. J. Sun, R. A. Ramsey, Y. Chen, and S. T. Wu, “Submillisecond-response sheared polymer network liquid crystals for display applications,” J. Disp. Technol.8(2), 87–90 (2012). [CrossRef]
  15. V. Presnyakov, K. E. Asatryan, T. V. Galstian, and A. Tork, “Polymer-stabilized liquid crystal for tunable microlens applications,” Opt. Express10(17), 865–870 (2002). [CrossRef] [PubMed]
  16. J. Sun, S. Xu, H. Ren, and S. T. Wu, “Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens,” Appl. Phys. Lett.102(16), 161106 (2013). [CrossRef]
  17. H. Ren, S. Xu, Y. Liu, and S. T. Wu, “Switchable focus using a polymeric lenticular microlens array and a polarization rotator,” Opt. Express21(7), 7916–7925 (2013). [CrossRef] [PubMed]
  18. P. Penfield and H. A. Haus, Electrodynamics of Moving Media (MIT, Cambridge, 1967).
  19. C.-C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express14(9), 4101–4106 (2006). [CrossRef] [PubMed]
  20. S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A33(2), 1270–1274 (1986). [CrossRef] [PubMed]
  21. E. Lueder, 3D Displays (Wiley, New York, 2012).
  22. Q. H. Wang, X. F. Li, L. Zhou, A. H. Wang, and D. H. Li, “Cross-talk reduction by correcting the subpixel position in a multiview autostereoscopic three-dimensional display based on a lenticular sheet,” Appl. Opt.50(7), B1–B5 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited