OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29313–29319

A fiber-to-chip coupler based on Si/SiON cascaded tapers for Si photonic chips

Hyundai Park, Sanggi Kim, Jaegyu Park, Jiho Joo, and Gyungock Kim  »View Author Affiliations

Optics Express, Vol. 21, Issue 24, pp. 29313-29319 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1918 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper reports a fiber-to-chip coupler consisting of a silicon inverted taper and a silicon oxynitride (SiON) double stage taper, where the cascaded taper structure enables adiabatic mode transfer between a submicron silicon waveguide and a single mode fiber. The coupler, fabricated by a simplified process, demonstrates an average coupling loss of 3.6 and 4.2 dB for TM and TE polarizations, respectively, with a misalignment tolerance of ± 2.2 µm for 1 dB loss penalty.

© 2013 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:

Original Manuscript: October 9, 2013
Revised Manuscript: November 8, 2013
Manuscript Accepted: November 13, 2013
Published: November 19, 2013

Hyundai Park, Sanggi Kim, Jaegyu Park, Jiho Joo, and Gyungock Kim, "A fiber-to-chip coupler based on Si/SiON cascaded tapers for Si photonic chips," Opt. Express 21, 29313-29319 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. Dobbelaere, “A grating-coupler enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011). [CrossRef]
  2. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. V. Thourhout, T. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol.25(1), 151–156 (2007).
  3. A. Mekis, S. Abdalla, D. Foltz, S. Gloeckner, S. Hovey, S. Jackson, Y. Liang, M. Mack, G. Masini, M. Peterson, T. Pinguet, S. Sahni, M. Sharp, P. Sun, D. Tan, L. Verslegers, B. P. Welch, K. Yokoyama, S. Yu, and P. M. De Dobbelaere, “A CMOS photonics platform for high-speed optical interconnects,” in Proc. of IEEE Photonics Conference (IEEE, 2012), pp. 356–357. [CrossRef]
  4. W. Sfar Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, and F. Letzkus, “CMOS-compatible nonuniform grating coupler with 86% coupling efficiency,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (CD) (Optical Society of America, 2013), paper Mo.3.B.3.
  5. P. De Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, A. Mekis, T. Pinguet, S. Sahni, A. Narasimha, D. Guckenberger, and M. Harrison, “Si Photonics Based High-Speed optical Transceivers,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper We.1.E.5. [CrossRef]
  6. L. H. Gabrielli and M. Lipson, “Integrated Luneburg lens via ultra-strong index gradient on silicon,” Opt. Express19(21), 20122–20127 (2011). [CrossRef] [PubMed]
  7. P. Markov, J. G. Valentine, and S. M. Weiss, “Fiber-to-chip coupler designed using an optical transformation,” Opt. Express20(13), 14705–14713 (2012). [CrossRef] [PubMed]
  8. P. Sun and R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express17(6), 4565–4574 (2009). [CrossRef] [PubMed]
  9. M. Wood, P. Sun, and R. M. Reano, “Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits,” Opt. Express20(1), 164–172 (2012). [CrossRef] [PubMed]
  10. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express11(22), 2927–2939 (2003). [CrossRef] [PubMed]
  11. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  12. B. Ben Bakir, A. Vazquez de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-Loss (<1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-Mm Silicon-on-Insulator Wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010). [CrossRef]
  13. M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun.283(19), 3678–3682 (2010). [CrossRef]
  14. A. Khilo, M. A. Popović, M. Araghchini, and F. X. Kärtner, “Efficient planar fiber-to-chip coupler based on two-stage adiabatic evolution,” Opt. Express18(15), 15790–15806 (2010). [CrossRef] [PubMed]
  15. A. Barkai, A. Liu, D. Kim, R. Cohen, N. Elek, H.-H. Chang, B. H. Malik, R. Gabay, R. Jones, M. Paniccia, and N. Izhaky, “Double-stage taper for coupling between SOI waveguides and single-mode fiber,” J. Lightwave Technol.26(24), 3860–3865 (2008). [CrossRef]
  16. K. Ku and M. M. Lee, “Cascade of two opposite tapers for butt-coupling between fibers and silicon photonic wires with large misalignment tolerance and low polarization dependency,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTu2C.3. [CrossRef]
  17. Fimmwave/Fimmprop, Photon Design, http://www.photond.com .
  18. R. Ben-Michael, U. Koren, B. Miller, G. Young, M. Chien, and G. Raybon, “InP-based multiple quantum well lasers with an integrated tapered beam expander waveguide,” IEEE Photon. Technol. Lett.6(12), 1412–1414 (1994). [CrossRef]
  19. M. Bose, D. N. Bose, and D. K. Basa, “Plasma enhanced growth, composition and refractive index of Silicon oxynitride films,” Mater. Lett.52(6), 417–422 (2002). [CrossRef]
  20. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express12(8), 1622–1631 (2004). [CrossRef] [PubMed]
  21. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agrawal, J. Foresi, and L. C. Kimerling, “Effect of size and rougness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett.77(11), 1617–1619 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited