OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29320–29331

Raman and loss induced quantum noise in depleted fiber optical parametric amplifiers

S. M. M. Friis, K. Rottwitt, and C. J. McKinstrie  »View Author Affiliations

Optics Express, Vol. 21, Issue 24, pp. 29320-29331 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2103 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a semi-classical approach for predicting the quantum noise properties of fiber optical parametric amplifiers. The unavoidable contributors of noise, vacuum fluctuations, loss-induced noise, and spontaneous Raman scattering, are included in the analysis of both phase-insensitive and phase-sensitive amplifiers. We show that the model agrees with earlier fully quantum approaches in the linear gain regime, whereas in the saturated gain regime, in which the classical equations are valid, we predict that the amplifier increases the signal-to-noise ratio by generating an amplitude-squeezed state of light. Also, in the same process, we analyze the quantum noise properties of the pump, which is difficult using standard quantum approaches, and we discover that the pump displays complicated dynamics in both the linear and the nonlinear gain regimes.

© 2013 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(270.2500) Quantum optics : Fluctuations, relaxations, and noise

ToC Category:
Nonlinear Optics

Original Manuscript: September 17, 2013
Revised Manuscript: November 5, 2013
Manuscript Accepted: November 6, 2013
Published: November 20, 2013

Virtual Issues
Nonlinear Optics (2013) Optics Express

S. M. M. Friis, K. Rottwitt, and C. J. McKinstrie, "Raman and loss induced quantum noise in depleted fiber optical parametric amplifiers," Opt. Express 21, 29320-29331 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron.8, 506–520 (2002). [CrossRef]
  2. J. A. Levenson, I. Abram, T. Rivera, and P. Grangier, “Reduction of quantum noise in optical parametric amplification,” J. Opt. Soc. Am. B10, 2233–2238 (1993). [CrossRef]
  3. C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D26, 1817–1839 (1982). [CrossRef]
  4. Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics5, 340–436 (2011). [CrossRef]
  5. C. J. McKinstrie and J. P. Gordon, “Field fluctuations produced by parametric processes in fibers,” IEEE J. Sel. Top. Quantum Electron.18, 958–969 (2012). [CrossRef]
  6. C. J. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express12, 4973–4979 (2004). [CrossRef] [PubMed]
  7. C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer, “Translation of quantum states by four-wave mixing in fibers,” Opt. Express13, 9131–9142 (2005). [CrossRef] [PubMed]
  8. C. J. McKinstrie, M. Yu, M. G. Raymer, and S. Radic, “Quantum noise properties of parametric processes,” Opt. Express13, 4986–5012 (2005). [CrossRef] [PubMed]
  9. C. J. McKinstrie, M. G. Raymer, S. Radic, and M. V. Vasilyev, “Quantum mechanics of phase-sensitive amplification in a fiber,” Opt. Commun.257, 146–163 (2005). [CrossRef]
  10. P. L. Voss and P. Kumar, “Raman-effect induced noise limits on χ(3) parametric amplifiers and wavelength converters,” J. Opt. B Quantum Semiclassical Opt.6, 762–770 (2004). [CrossRef]
  11. P. L. Voss, K. G. Köprülü, and P. Kumar, “Raman-noise-induced quantum limits for χ(3) nondegenerate phase-sensitive amplification and quadrature squeezing,” J. Opt. Soc. Am. B23, 598–609 (2006). [CrossRef]
  12. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  13. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100-nm bandwidth Raman amplifier,” IEEE Photonics Technol. Lett.11, 530–532 (1999). [CrossRef]
  14. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B6, 1159–1166 (1989). [CrossRef]
  15. K. Rottwitt, J. Bromage, A. J. Stentz, L. Leng, M. E. Lines, and H. Smith, “Scaling of the Raman gain coefficient: Applications to germanosilicate fibers,” J. Lightwave Technol.21, 1652–1662 (2003). [CrossRef]
  16. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of Raman and parametric gain on single-pump parametric amplifiers,” Opt. Express15, 8104–8114 (2007). [CrossRef] [PubMed]
  17. C. J. McKinstrie and M. G. Raymer, “Four-wave-mixing cascades near the zero-dispersion frequency,” Opt. Express14, 9600–9610 (2006). [CrossRef] [PubMed]
  18. Z. Tong, C. Lundström, P. A. Andrekson, M. Karlsson, and A. Bogris, “Ultralow noise, broadband phase-sensitive optical amplifiers, and their applications,” IEEE J. Sel. Top. Quantum Electron.18, 1016–1032 (2012). [CrossRef]
  19. M. Vasilyev, “Distributed phase-sensitive amplification,” Opt. Express13, 7563–7571 (2005). [CrossRef] [PubMed]
  20. C. C. Gerry and P. L. Knight, Introductory Quantum Optics (Cambridge University, 2005).
  21. C. J. McKinstrie, S. Radic, R. M. Jopson, and A. R. Chraplyvy, “Quantum noise limits on optical monitoring with parametric devices,” Opt. Commun.259, 309–320 (2006). [CrossRef]
  22. K. Rottwitt and A. J. Stentz, “Raman amplification in lightwave communication systems,” in Optical Fiber Telecommunications IV-A,I. Kaminow and T. Li, eds. (Academic, 2002), pp. 213–257. [CrossRef]
  23. Z. Tong, A. Bogris, M. Karlsson, and P. A. Andrekson, “Full characterization of the signal and idler noise figure spectra in single-pumped fiber optical parametric amplifiers,” Opt. Express18, 2884–2893 (2010). [CrossRef] [PubMed]
  24. K. Croussore and G. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron.14, 648–658 (2008). [CrossRef]
  25. M. Sköld, J. Yang, H. Sunnerud, M. Karlsson, S. Oda, and P. A. Andrekson, “Constellation diagram analysis of DPSK signal regeneration in a saturated parametric amplifier,” Opt. Express16, 5974–5982 (2008). [CrossRef] [PubMed]
  26. C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Grüner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett.21, 872–874 (2009). [CrossRef]
  27. M. Matsumoto, “Fiber-based all-optical signal regeneration,” IEEE J. Sel. Top. Quantum Electron.18, 738–752 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited