OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29350–29357

Quantum random bit generation using energy fluctuations in stimulated Raman scattering

Philip J. Bustard, Duncan G. England, Josh Nunn, Doug Moffatt, Michael Spanner, Rune Lausten, and Benjamin J. Sussman  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29350-29357 (2013)
http://dx.doi.org/10.1364/OE.21.029350


View Full Text Article

Enhanced HTML    Acrobat PDF (866 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Random number sequences are a critical resource in modern information processing systems, with applications in cryptography, numerical simulation, and data sampling. We introduce a quantum random number generator based on the measurement of pulse energy quantum fluctuations in Stokes light generated by spontaneously-initiated stimulated Raman scattering. Bright Stokes pulse energy fluctuations up to five times the mean energy are measured with fast photodiodes and converted to unbiased random binary strings. Since the pulse energy is a continuous variable, multiple bits can be extracted from a single measurement. Our approach can be generalized to a wide range of Raman active materials; here we demonstrate a prototype using the optical phonon line in bulk diamond.

© 2013 Optical Society of America

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(190.5650) Nonlinear optics : Raman effect
(190.5890) Nonlinear optics : Scattering, stimulated
(270.1670) Quantum optics : Coherent optical effects
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(290.5910) Scattering : Scattering, stimulated Raman

ToC Category:
Quantum Optics

History
Original Manuscript: September 16, 2013
Revised Manuscript: November 1, 2013
Manuscript Accepted: November 2, 2013
Published: November 20, 2013

Citation
Philip J. Bustard, Duncan G. England, Josh Nunn, Doug Moffatt, Michael Spanner, Rune Lausten, and Benjamin J. Sussman, "Quantum random bit generation using energy fluctuations in stimulated Raman scattering," Opt. Express 21, 29350-29357 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29350


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Hayes, “Randomness as a resource,” Am. Sci.89, 300–304 (2001).
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002). [CrossRef]
  3. S. L. Lohr, Sampling: Design and Analysis (Cengage Learning, 2010).
  4. N. Metropolis and S. Ulam, “The Monte Carlo method,”J. Am. Stat. Assoc.44, 335–341 (1949). [CrossRef] [PubMed]
  5. A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, and H. Zbinden, “Optical quantum random number generator,” J. Mod. Opt.47, 595–598 (2000).
  6. C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U. L. Andersen, C. Marquardt, and G. Leuchs, “A generator for unique quantum random numbers based on vacuum states,” Nat. Photonics4, 711–715 (2010). [CrossRef]
  7. Y. Shen, L. Tian, and H. Zou, “Practical quantum random number generator based on measuring the shot noise of vacuum states,” Phys. Rev. A81, 063814 (2010). [CrossRef]
  8. T. Symul, S. M. Assad, and P. K. Lam, “Real time demonstration of high bitrate quantum random number generation with coherent laser light,” Appl. Phys. Lett.98, 231103 (2011). [CrossRef]
  9. B. Qi, Y.-M. Chi, H.-K. Lo, and L. Qian, “High-speed quantum random number generation by measuring phase noise of a single-mode laser,” Opt. Lett.35, 312–314 (2010). [CrossRef] [PubMed]
  10. H. Guo, W. Tang, Y. Liu, and W. Wei, “Truly random number generation based on measurement of phase noise of a laser,” Phys. Rev. E81, 051137 (2010). [CrossRef]
  11. M. Jofre, M. Curty, F. Steinlechner, G. Anzolin, J. P. Torres, M. W. Mitchell, and V. Pruneri, “True random numbers from amplified quantum vacuum,” Opt. Express19, 20665–20672 (2011). [CrossRef] [PubMed]
  12. F. Xu, B. Qi, X. Ma, H. Xu, H. Zheng, and H.-K. Lo, “Ultrafast quantum random number generation based on quantum phase fluctuations,” Opt. Express20, 12366–12377 (2012). [CrossRef] [PubMed]
  13. A. Marandi, N. C. Leindecker, K. L. Vodopyanov, and R. L. Byer, “All-optical quantum random bit generation from intrinsically binary phase of parametric oscillators,” Opt. Express20, 19322–19330 (2012). [CrossRef] [PubMed]
  14. S. Pironio, A. Acín, S. Massar, A. Boyer de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random numbers certified by Bell’s theorem,” Nature464, 1021–1024 (2010). [CrossRef]
  15. M. Um, X. Zhang, J. Zhang, Y. Wang, S. Yangchao, D.-L. Deng, L.-M. Duan, and K. Kim, “Experimental certification of random numbers via quantum contextuality,” Sci. Rep.3, 1627 (2013). [CrossRef] [PubMed]
  16. J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, postprocessing free, quantum random number generator,” Appl. Phys. Lett.93, 031109 (2008). [CrossRef]
  17. W. Wei and H. Guo, “Bias-free true random-number generator,” Opt. Lett.34, 1876–1878 (2009). [CrossRef] [PubMed]
  18. M. Fürst, H. Weier, S. Nauerth, D. G. Marangon, C. Kurtsiefer, and H. Weinfurter, “High speed optical quantum random number generation,” Opt. Express18, 13029–13037 (2010). [CrossRef] [PubMed]
  19. M. Ren, E. Wu, Y. Liang, Y. Jian, G. Wu, and H. Zeng, “Quantum random-number generator based on a photon-number-resolving detector,” Phys. Rev. A83, 023820 (2011). [CrossRef]
  20. M. Wahl, M. Leifgen, M. Berlin, T. Röhlicke, H.-J. Rahn, and O. Benson, “An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements,” Appl. Phys. Lett.98, 171105 (2011). [CrossRef]
  21. H. Schmidt, “Quantum mechanical random number generator,” J. Appl. Phys.41, 462–468 (1970). [CrossRef]
  22. P. J. Bustard, D. Moffatt, R. Lausten, G. Wu, I. A. Walmsley, and B. J. Sussman, “Quantum random bit generation using stimulated Raman scattering,” Opt. Express19, 25173–25180 (2011). [CrossRef]
  23. H. Krawczyk, “LFSR-based hashing and authentication,” in “Advances in Cryptology - CRYPTO’94,”, vol. 839 of Lecture Notes in Computer Science, Y. Desmedt, ed. (Springer, 1994), pp. 129–139.
  24. X. Ma, F. Xu, H. Xu, X. Tan, B. Qi, and H.-K. Lo, “Postprocessing for quantum random-number generators: Entropy evaluation and randomness extraction,” Phys. Rev. A87, 062327 (2013). [CrossRef]
  25. A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron.6, 55–140 (1979). [CrossRef]
  26. M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A24, 1980–1993 (1981). [CrossRef]
  27. S. J. Kuo, D. T. Smithey, and M. G. Raymer, “Spatial interference of macroscopic light fields from independent Raman sources,” Phys. Rev. A43, 4083–4086 (1991). [CrossRef] [PubMed]
  28. D. T. Smithey, M. Belsley, K. Wedding, and M. G. Raymer, “Near quantum-limited phase memory in a Raman amplifier,” Phys. Rev. Lett.67, 2446–2449 (1991). [CrossRef] [PubMed]
  29. M. Belsley, D. T. Smithey, K. Wedding, and M. G. Raymer, “Observation of extreme sensitivity to induced molecular coherence in stimulated Raman scattering,” Phys. Rev. A48, 1514–1525 (1993). [CrossRef] [PubMed]
  30. M. G. Raymer, K. Rza̧żewski, and J. Mostowski, “Pulse-energy statistics in stimulated Raman scattering,” Opt. Lett.7, 71–73 (1982). [CrossRef] [PubMed]
  31. I. A. Walmsley and M. G. Raymer, “Observation of macroscopic quantum fluctuations in stimulated Raman scattering,” Phys. Rev. Lett.50, 962–965 (1983). [CrossRef]
  32. I. A. Walmsley and M. G. Raymer, “Experimental study of the macroscopic quantum fluctuations of partially coherent stimulated Raman scattering,” Phys. Rev. A33, 382–390 (1986). [CrossRef] [PubMed]
  33. J. Mostowski and B. d. z. Sobolewska, “Transverse effects in stimulated Raman scattering,” Phys. Rev. A30, 610–612 (1984). [CrossRef]
  34. M. G. Raymer, I. A. Walmsley, J. Mostowski, and B. Sobolewska, “Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering,” Phys. Rev. A32, 332–344 (1985). [CrossRef] [PubMed]
  35. F. C. Waldermann, B. J. Sussman, J. Nunn, V. O. Lorenz, K. C. Lee, K. Surmacz, K. H. Lee, D. Jaksch, I. A. Walmsley, P. Spizziri, P. Olivero, and S. Prawer, “Measuring phonon dephasing with ultrafast pulses using Raman spectral interference,” Phys. Rev. B78, 155201 (2008). [CrossRef]
  36. K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Relat. Mater.19, 1289–1295 (2010). [CrossRef]
  37. K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics6, 41–44 (2011). [CrossRef]
  38. K. Rza̧żewski, M. Lewenstein, and M. G. Raymer, “Statistics of stimulated Stokes pulse energies in the steady-state regime,” Opt. Commun.43, 451–454 (1982). [CrossRef]
  39. G. Marsaglia, “Diehard battery of tests of randomness,” www.stat.fsu.edu/pub/diehard/ (1995).
  40. J. Reintjes and M. Bashkansky, Handbook of Optics, Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics, 3rd ed. (McGraw-Hill Professional, 2010), Chap. 15, p. 15.1.
  41. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298, 399–402 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited