OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29365–29373

Tailoring the directivity of both excitation and emission of dipole simultaneously with two-colored plasmonic antenna

Zheng Xi, Yonghua Lu, Wenhai Yu, Peijun Yao, Pei Wang, and Hai Ming  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29365-29373 (2013)
http://dx.doi.org/10.1364/OE.21.029365


View Full Text Article

Enhanced HTML    Acrobat PDF (2204 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a two-colored plasmonic antenna which can control the directivity of the excitation and emission light independently and simultaneously. By carefully tuning the phase difference of the constituting elements of the antenna, unidirectional fluorescence emission and laser light scattering can be obtained. In particular, the direction of the maximum emission and minimum scattering can be tailored in the same direction resulting improvement of signal to noise ratio in single molecule experiment. A two-dipole model is applied to describe the phenomena. The radiation and scattering pattern can be further tuned by varying the antenna structure.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2510) Physical optics : Fluorescence
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: October 15, 2013
Revised Manuscript: November 8, 2013
Manuscript Accepted: November 8, 2013
Published: November 20, 2013

Citation
Zheng Xi, Yonghua Lu, Wenhai Yu, Peijun Yao, Pei Wang, and Hai Ming, "Tailoring the directivity of both excitation and emission of dipole simultaneously with two-colored plasmonic antenna," Opt. Express 21, 29365-29373 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29365


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009). [CrossRef]
  2. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005). [CrossRef] [PubMed]
  3. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402 (2006). [CrossRef] [PubMed]
  4. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. m. c. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett.95, 117401 (2005). [CrossRef] [PubMed]
  5. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science275, 1102–1106 (1997). [CrossRef] [PubMed]
  6. D. Wang, W. Zhu, M. D. Best, J. P. Camden, and K. B. Crozier, “Directional raman scattering from single molecules in the feed gaps of optical antennas,” Nano Lett.13, 2194–2198 (2013). [CrossRef] [PubMed]
  7. V. Giannini and J. A. Sánchez-Gil, “Excitation and emission enhancement of single molecule fluorescence through multiple surface-plasmon resonances on metal trimer nanoantennas,” Opt. Lett.33, 899–901 (2008). [CrossRef] [PubMed]
  8. K. Thyagarajan, S. Rivier, A. Lovera, and O. J. Martin, “Enhanced second-harmonic generation from double resonant plasmonic antennae,” Opt. Express20, 12860–12865 (2012). [CrossRef] [PubMed]
  9. H. Harutyunyan, G. Volpe, R. Quidant, and L. Novotny, “Enhancing the nonlinear optical response using multi-frequency gold-nanowire antennas,” Phys. Rev. Lett.108, 217403 (2012). [CrossRef]
  10. H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Mul-tiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett.12, 4997–5002 (2012). [CrossRef] [PubMed]
  11. H. Aouani, H. pov, M. Rahmani, M. Navarro-Cia, K. Hegnerov, J. Homola, M. Hong, and S. A. Maier, “Ultra-sensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano7, 669–675 (2013). [CrossRef]
  12. W. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum.74, 3597–3619 (2003). [CrossRef]
  13. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010). [CrossRef] [PubMed]
  14. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics4, 312–315 (2010). [CrossRef]
  15. T. Pakizeh and M. Kall, “Unidirectional ultracompact optical nanoantennas,” Nano Lett.9, 2343–2349 (2009). [CrossRef] [PubMed]
  16. B. Rolly, B. Stout, S. Bidault, and N. Bonod, “Crucial role of the emitter–particle distance on the directivity of optical antennas,” Opt. Lett.36, 3368–3370 (2011). [CrossRef] [PubMed]
  17. N. Bonod, A. Devilez, B. Rolly, S. Bidault, and B. Stout, “Ultracompact and unidirectional metallic antennas,” Phys. Rev. B82, 115429 (2010). [CrossRef]
  18. D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett.13, 3843–3849 (2013). [CrossRef] [PubMed]
  19. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core–shell nanoparticles,” ACS Nano6, 5489–5497 (2012). [CrossRef] [PubMed]
  20. S. Person, M. Jain, Z. Lapin, J. J. Senz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett.13, 1806–1809 (2013). [PubMed]
  21. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun.4, 1527 (2013). [CrossRef] [PubMed]
  22. J. Geffrin, B. García-Camara, R. Gómez-Medina, P. Albella, L. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, J. S. Nieto-Vesperinas, Saenz, and F. Moreno, “Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat. Commun.3, 1171 (2012). [CrossRef]
  23. E. Palik, Handbook of Optical Constants of Solids (Academic press, 1998).
  24. T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun.2, 481 (2011). [CrossRef] [PubMed]
  25. T. Taminiau, F. Stefani, F. Segerink, and N. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2, 234–237 (2008). [CrossRef]
  26. M. Kerker, D.-S. Wang, and C. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am.73, 765–767 (1983). [CrossRef]
  27. C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha, “Advances in single-molecule fluorescence methods for molecular biology,” Annu. Rev. Biochem.77, 51–76 (2008). [CrossRef] [PubMed]
  28. S. Weiss, “Fluorescence spectroscopy of single biomolecules,” Science283, 1676–1683 (1999). [CrossRef] [PubMed]
  29. S. G. Rodrigo, H. Harutyunyan, and L. Novotny, “Coherent control of light scattering from nanostructured materials by second-harmonic generation,” Phys. Rev. Lett.110, 177405 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited