OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29374–29382

Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect

Yangjin Ma, Yi Zhang, Shuyu Yang, Ari Novack, Ran Ding, Andy Eu-Jin Lim, Guo-Qiang Lo, Tom Baehr-Jones, and Michael Hochberg  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29374-29382 (2013)
http://dx.doi.org/10.1364/OE.21.029374


View Full Text Article

Enhanced HTML    Acrobat PDF (2615 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate compact, broadband, ultralow loss silicon waveguide crossings operating at 1550 nm and 1310 nm. Cross-wafer measurement of 30 dies shows transmission insertion loss of − 0.028 ± 0.009 dB for the 1550 nm device and − 0.017 ± 0.005 dB for the 1310 nm device. Both crossings show crosstalk lower than − 37 dB. The devices were fabricated in a CMOS-compatible process using 248 nm optical lithography with a single etch step.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(200.4650) Optics in computing : Optical interconnects
(220.0220) Optical design and fabrication : Optical design and fabrication
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

History
Original Manuscript: October 16, 2013
Revised Manuscript: November 12, 2013
Manuscript Accepted: November 14, 2013
Published: November 20, 2013

Citation
Yangjin Ma, Yi Zhang, Shuyu Yang, Ari Novack, Ran Ding, Andy Eu-Jin Lim, Guo-Qiang Lo, Tom Baehr-Jones, and Michael Hochberg, "Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect," Opt. Express 21, 29374-29382 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29374


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010). [CrossRef]
  2. M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E. Lim, P. Lo Guo-qiang, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Opt. Photonics News24(9), 32–39 (2013). [CrossRef]
  3. Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag.51(3), 72–77 (2013). [CrossRef]
  4. W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides,” Opt. Lett.32(19), 2801–2803 (2007). [CrossRef] [PubMed]
  5. P. Sanchis, P. Villalba, F. Cuesta, A. Håkansson, A. Griol, J. V. Galán, A. Brimont, and J. Martí, “Highly efficient crossing structure for silicon-on-insulator waveguides,” Opt. Lett.34(18), 2760–2762 (2009). [CrossRef] [PubMed]
  6. Y. Zhang, S. Yang, A. E. Lim, G. Lo, C. Galland, T. Baehr-jones, and M. Hochberg, “A CMOS-Compatible, Low-Loss, and Low-Crosstalk Silicon Waveguide Crossing,” IEEE Photon. Technol. Lett.25(5), 422–425 (2013). [CrossRef]
  7. L. Chen and Y. K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express20(17), 18977–18985 (2012). [CrossRef] [PubMed]
  8. P. Sanchis, J. Galan, A. Griol, J. Marti, A. M. Piqueras, and M. J. Perdigues, “Low-crosstalk in silicon-on-insulator waveguide crossings with optimized-angle,” IEEE Photon. Technol. Lett.19(20), 1583–1585 (2007). [CrossRef]
  9. H. Liu, H. Tam, P. K. Wai, and E. Pun, “Low-loss waveguide crossing using a multimode interference structure,” Opt. Commun.241(1-3), 99–104 (2004). [CrossRef]
  10. H. Chen and A. W. Poon, “Low-Loss Multimode-Interference-Based Crossings for Silicon Wire Waveguides,” IEEE Photon. Technol. Lett.18(21), 2260–2262 (2006). [CrossRef]
  11. Y. Luo, G. Li, X. Zheng, J. Yao, H. Thacker, J. Lee, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Low-loss low-crosstalk silicon rib waveguide crossing with tapered multimode-interference design,” Gr. IV Photonics26, 150–152 (2012).
  12. M. Popovic, “Low-loss Bloch waves in open structures and highly compact, efficient Si waveguide-crossing arrays,” Lasers Electro-Optics Soc. 20th Annu. Meet. IEEE 56–57 (2007). [CrossRef]
  13. Y. Zhang, A. Hosseini, X. Xu, D. Kwong, and R. T. Chen, “Ultralow-loss silicon waveguide crossing using Bloch modes in index-engineered cascaded multimode-interference couplers,” Opt. Lett.38(18), 3608–3611 (2013). [CrossRef] [PubMed]
  14. A. V. Tsarev, “Efficient silicon wire waveguide crossing with negligible loss and crosstalk,” Opt. Express19(15), 13732–13737 (2011). [CrossRef] [PubMed]
  15. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, D. X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express18(15), 16146–16155 (2010). [CrossRef] [PubMed]
  16. Y. Watanabe, Y. Sugimoto, N. Ikeda, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, and K. Asakawa, “Broadband waveguide intersection with low crosstalk in two-dimensional photonic crystal circuits by using topology optimization,” Opt. Express14(20), 9502–9507 (2006). [CrossRef] [PubMed]
  17. B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron.16(1), 6–22 (2010). [CrossRef]
  18. Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T. Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express21(1), 1310–1316 (2013). [CrossRef] [PubMed]
  19. http://docs.lumerical.com/en/mode/ref_varfdtd_physics_main.html
  20. lumerical_website,” http://www.lumerical.com/ .
  21. D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express20(12), 13425–13439 (2012). [CrossRef] [PubMed]
  22. M. Hochberg, N. Harris, Ran Ding, A. Yi Zhang, Novack, Zhe Xuan, and T. Baehr-Jones, “Silicon photonics The next fabless semiconductor industry,” IEEE Solid-State Circuits5(1), 48–58 (2013). [CrossRef]
  23. A. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE Press, 2001).
  24. W. Bogaerts, P. Bradt, L. Vanholme, P. Bienstman, and R. Baets, “Closed-loop modeling of silicon nanophotonics from design to fabrication and back again,” Opt. Quantum Electron.40(11-12), 801–811 (2008). [CrossRef]
  25. X. Wang, W. Shi, M. Hochberg, K. Adam, E. Schelew, J. F. Young, N. F. Jaeger, and L. Chrostowski, “Lithography simulation for the fabrication of silicon photonic devices with deep-ultraviolet lithography,” 9th Int. Conf. Gr. IV Photonics 288–290 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited