OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29392–29400

Theory of carrier depletion and light amplification in active slow light photonic crystal waveguides

Yaohui Chen and Jesper Mørk  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29392-29400 (2013)
http://dx.doi.org/10.1364/OE.21.029392


View Full Text Article

Enhanced HTML    Acrobat PDF (7179 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a perturbative approach, we perform a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguide. The impact of slow-light propagation on the carrier-depletion-induced nonlinear gain saturation of the device is investigated. An effective rate-equation-based model is presented. It is shown that it well accounts for the three-dimensional simulation results. Simulations indicate that a slow-light-enhanced photonic crystal traveling-wave amplifier has a high small-signal modal gain and low saturation power.

© 2013 Optical Society of America

OCIS Codes
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

History
Original Manuscript: September 16, 2013
Revised Manuscript: November 13, 2013
Manuscript Accepted: November 13, 2013
Published: November 21, 2013

Virtual Issues
Nonlinear Optics (2013) Optics Express

Citation
Yaohui Chen and Jesper Mørk, "Theory of carrier depletion and light amplification in active slow light photonic crystal waveguides," Opt. Express 21, 29392-29400 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29392


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2, 465–473 (2008). [CrossRef]
  2. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys.75, 1896–1899 (1994). [CrossRef]
  3. J. Mørk and T. R. Nielsen, “On the use of slow light for enhancing waveguide properties,” Opt. Lett.35, 2834–2836 (2010). [CrossRef] [PubMed]
  4. E. Mizuta, H. Watanabe, and T. Baba, “All semiconductor low-Δ photonic crystal waveguide for semiconductor optical amplifier,” Jpn. J. Appl. Phys.45, 6116–6120 (2006). [CrossRef]
  5. R. Kappeler, P. Kasper, H. Jäckel, and C. Hafner, “Record-low propagation losses of 154dB/cm for substrate-type W1 photonic crystal waveguides by means of hole shape engineering,” Appl. Phys. Lett.101, 131108 (2012). [CrossRef]
  6. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13fJ of energy consumed per bit transmitted,” Nat. Photonics4, 648–654 (2010). [CrossRef]
  7. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics5, 297–300 (2011). [CrossRef]
  8. K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmission using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics7, 569–575 (2013). [CrossRef]
  9. P. Bermel, E. Lidorikis, Y. Fink, and J. D. Joannopoulos, “Active materials embedded in photonic crystals and coupled to electromagnetic radiation,” Phys. Rev. B73, 165125 (2006). [CrossRef]
  10. Y. Liu, “Slow-light enhancement of stimulated emission of atomic systems in photonic crystals,” J. Opt. Soc. Am. B27442–446 (2010). [CrossRef]
  11. A. Mock, “First principles derivation of microcavity semiconductor laser threshold condition and its application to FDTD active cavity modeling,” J. Opt. Soc. Am. B27, 2262–2272 (2010). [CrossRef]
  12. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley, 1995).
  13. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron.25, 2297–2306 (1989). [CrossRef]
  14. P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun.164, 51–55 (1999). [CrossRef]
  15. J. Mørk, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron.5, 851–860 (1999). [CrossRef]
  16. B. Tromborg, H. E. Lassen, and H. Olesen, “Traveling wave analysis of semiconductor lasers: Modulation responses, mode stability and quantum mechanical treatment of noise spectra,” IEEE J. Quantum Electron.30, 939–956 (1994). [CrossRef]
  17. www.comsol.com .
  18. J. E. Sipe, N. A. R. Bhat, P. Chak, and S. Pereira, “Effective field theory for the nonlinear optical properties of photonic crystal,” Phys. Rev. E69,016604 (2004). [CrossRef]
  19. N. C. Panoiu, J. F. MicMillan, and C. W. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Sel. Top. Quantum Electron.16, 257–266 (2010). [CrossRef]
  20. A. Mecozzi and J. Mørk, “Theory of heterodyne pump-probe experiments with femtosecond pulses,” J. Opt. Soc. Am. B13, 2437–2452 (1996). [CrossRef]
  21. S. G. Johnson and J. D. Joannopoulos, “Bloch-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8, 173–190 (2001). [CrossRef] [PubMed]
  22. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).
  23. J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev.5, 308–321 (2011). [CrossRef]
  24. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010). [CrossRef]
  25. K. Schmidt and R. Kappeler, “Efficient computation of photonic crystal waveguide modes with dispersive material,” Opt. Express18, 7307–7322 (2010). [CrossRef] [PubMed]
  26. C. Fietz, Y. Urzhumov, and G. Shvets, “Complex k band diagrams of 3D metamaterial/photonic crystals,” Opt. Express19, 19027–19041 (2011). [CrossRef] [PubMed]
  27. T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol.26, 1396–1403 (2008). [CrossRef]
  28. J. Petykiewicz, G. Shambat, B. Ellis, and J. Vuckovic, “Electrical properties of GaAs photonic crystal cavity lateral p-i-n diodes,” Appl. Phys. Lett.101, 011104 (2012). [CrossRef]
  29. T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly-efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett.101, 113903 (2008). [CrossRef]
  30. T. Liu, K. Obermann, K. Petermann, F. Girardin, and G. Guekos, “Effect of saturation caused by amplified spontaneous emission on semiconductor optical amplifier performance,” Electron. Lett.33, 2042–2043 (1997). [CrossRef]
  31. L. O’ Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovic, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express18, 27627–27638 (2010). [CrossRef]
  32. J. Grgic, J. R. Ott, F. Wang, O. Sigmund, A. P. Jauho, J. Mørk, and N. A. Mortensen, “Fundamental limitations to gain enhancement in periodic media and waveguides,” Phys. Rev. Lett.108, 183903 (2012). [CrossRef] [PubMed]
  33. F. A. Kish, D. Welch, R. Nagarajan, J. L. Pleumeekers, V. Lal, M. Ziari, A. Nilsson, M. Kato, S. Murthy, P. Evans, S. W. Corzine, M. Mitchell, P. Samra, M. Missey, S. DeMars, R. P. Schneider, M. S. Reffle, T. Butrie, J. T. Rahn, M. Van Leeuwen, J. W. Stewart, D. J. H. Lambert, R. C. Muthiah, H.-S. Tsai, J. S. Bostak, A. Dentai, K.-T. Wu, H. Sun, D. J. Pavinski, J. Zhang, J. Tang, J. McNicol, M. Kuntz, V. Dominic, B. D. Taylor, R. A. Salvatore, M. Fisher, A. Spannagel, E. Strzelecka, P. Studenkov, M. Raburn, W. Williams, D. Christini, K. K. Thomson, S. S. Agashe, R. Malendevich, G. Goldfarb, S. Melle, C. Joyner, M. Kaufman, and S. G. Grubb, “Current status of large-scale inp photonic integrated circuits,” IEEE J. Sel. Top. Quantum Electron.17, 1470–1489 (2011). [CrossRef]
  34. J. Mørk, P. Lunnemann, W. Xue, Y. Chen, P. Kaer, and T. R. Nielsen, “Slow and fast light in semiconductor waveguides,” Semicond. Sci. Technol.25, 083002 (2010). [CrossRef]
  35. M. L. Nielsen and J. Mørk, “Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering,” J. Opt. Soc. Am. B21, 1606–1619, (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited