OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29401–29412

Spectral investigation of higher-order Kerr effects in a tight-focusing geometry

Alan Heins and Chunlei Guo  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29401-29412 (2013)
http://dx.doi.org/10.1364/OE.21.029401


View Full Text Article

Enhanced HTML    Acrobat PDF (1769 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The role of the Higher-Order Kerr Effects (HOKE) in intensity clamping is experimentally investigated. We fail to observe any evidence of HOKE-based intensity clamping in a tight geometrical focusing experiment. We introduce a polarization-based technique that can distinguish between spectral components from the leading and trailing edges of the pulse. The results of this time-resolved measurement support the ionization theory of intensity clamping.

© 2013 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(190.3270) Nonlinear optics : Kerr effect
(190.4180) Nonlinear optics : Multiphoton processes
(020.2649) Atomic and molecular physics : Strong field laser physics

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 18, 2013
Revised Manuscript: November 8, 2013
Manuscript Accepted: November 10, 2013
Published: November 21, 2013

Citation
Alan Heins and Chunlei Guo, "Spectral investigation of higher-order Kerr effects in a tight-focusing geometry," Opt. Express 21, 29401-29412 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29401


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Lontano, G. Lampis, A. Kim, and A. Sergeev, “Intense laser pulse dynamics in dense gases,” Phys. Scr.T63, 141–147 (1996). [CrossRef]
  2. P. Monot, T. Auguste, L. Lompré, G. Mainfray, and C. Manus, “Focusing limits of a terawatt laser in an underdense plasma,” JOSA B9(9), 1579–1584 (1992). [CrossRef]
  3. S. Rae, “Ionization-induced defocusing of intense laser pulses in high-pressure gases,” Opt. Commun.97(1-2), 25–28 (1993). [CrossRef]
  4. S. C. Rae, “Spectral blueshifting and spatial defocusing of intense laser pulses in dense gases,” Opt. Commun.104(4-6), 330–335 (1994). [CrossRef]
  5. R. Rankin, C. E. Capjack, N. H. Burnett, and P. B. Corkum, “Refraction effects associated with multiphoton ionization and ultrashort-pulse laser propagation in plasma waveguides,” Opt. Lett.16(11), 835–837 (1991). [CrossRef] [PubMed]
  6. S. P. L. Blanc and R. Sauerbrey, “Spectral, temporal, and spatial characteristics of plasma-induced spectral blue shifting and its application to femtosecond pulse measurement,” J. Opt. Soc. Am. B13(1), 72–88 (1996). [CrossRef]
  7. M. Ciarrocca, J. P. Marangos, D. D. Burgess, M. H. R. Hutchinson, R. A. Smith, S. C. Rae, and K. Burnett, “Spectral and spatial modifications to an intense 1 μm laser pulse interacting with a dense argon gas,” Opt. Commun.110(3-4), 425–434 (1994). [CrossRef]
  8. P. Chessa, E. De Wispelaere, F. Dorchies, V. Malka, J. Marques, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas,” Phys. Rev. Lett.82(3), 552–555 (1999). [CrossRef]
  9. S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, “Generation and characterization of the highest laser intensities (1022 W/cm2),” Opt. Lett.29(24), 2837–2839 (2004). [CrossRef] [PubMed]
  10. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep.441(2-4), 47–189 (2007). [CrossRef]
  11. J. Kasparian, R. Sauerbrey, and S. Chin, “The critical laser intensity of self-guided light filaments in air,” Appl. Phys. B71(6), 877–879 (2000). [CrossRef]
  12. A. Becker, N. Aközbek, K. Vijayalakshmi, E. Oral, C. Bowden, and S. Chin, “Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas,” Appl. Phys. B73(3), 287–290 (2001). [CrossRef]
  13. W. Liu, S. Petit, A. Becker, N. Aközbek, C. Bowden, and S. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun.202(1-3), 189–197 (2002). [CrossRef]
  14. G. G. Luther, A. C. Newell, and J. V. Moloney, “The effects of normal dispersion on collapse events,” Physica D74(1-2), 59–73 (1994). [CrossRef]
  15. J. K. Ranka and A. L. Gaeta, “Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses,” Opt. Lett.23(7), 534–536 (1998). [CrossRef] [PubMed]
  16. J. E. Rothenberg, “Pulse splitting during self-focusing in normally dispersive media,” Opt. Lett.17(8), 583–585 (1992). [CrossRef] [PubMed]
  17. A. Couairon, E. Gaižauskas, D. Faccio, A. Dubietis, and P. Di Trapani, “Nonlinear X-wave formation by femtosecond filamentation in Kerr media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(1), 016608 (2006). [CrossRef] [PubMed]
  18. S. Vlasov, L. Piskunova, and V. Talanov, “Three-dimensional wave collapse in the nonlinear Schrödinger equation model,” Zh. Eksp. Teor. Fiz95, 1945 (1989).
  19. S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A46(2), 1084–1090 (1992). [CrossRef] [PubMed]
  20. R. W. Boyd, Nonlinear Optics, 2 ed. (Academic Press, New York, 2003).
  21. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Moving-focus versus self-waveguiding model for long-distance propagation of femtosecond pulses in air,” Quantum Electronics, IEEE Journal of35(12), 1771–1776 (1999). [CrossRef]
  22. W. Liu and S. Chin, “Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air,” Opt. Express13(15), 5750–5755 (2005). [CrossRef] [PubMed]
  23. G. Fibich and G. Papanicolaou, “Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension,” SIAM J. Appl. Math.60(1), 183–240 (1999). [CrossRef]
  24. P. L. Kelley, “Self-Focusing of Optical Beams,” Phys. Rev. Lett.15(26), 1005–1008 (1965). [CrossRef]
  25. V. Loriot, P. Béjot, W. Ettoumi, Y. Petit, J. Kasparian, S. Henin, E. Hertz, B. Lavorel, O. Faucher, and J.-P. Wolf, “On negative higher-order Kerr effect and filamentation,” Laser Phys.21(7), 1319–1328 (2011). [CrossRef]
  26. J. Kasparian and J.-P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express16(1), 466–493 (2008). [CrossRef] [PubMed]
  27. P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett.104(10), 103903 (2010). [CrossRef] [PubMed]
  28. C. Brée, A. Demircan, and G. Steinmeyer, “Saturation of the All-Optical Kerr Effect,” Phys. Rev. Lett.106(18), 183902 (2011). [CrossRef] [PubMed]
  29. J. Kasparian, P. Béjot, and J.-P. Wolf, “Arbitrary-order nonlinear contribution to self-steepening,” Opt. Lett.35(16), 2795–2797 (2010). [CrossRef] [PubMed]
  30. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components,” Opt. Express17(16), 13429–13434 (2009). [CrossRef] [PubMed]
  31. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components: erratum,” Opt. Express18(3), 3011–3012 (2010). [CrossRef]
  32. P. Béjot and J. Kasparian, “Conical emission from laser filaments and higher-order Kerr effect in air,” Opt. Lett.36(24), 4812–4814 (2011). [CrossRef] [PubMed]
  33. A. L. Gaeta, “Catastrophic Collapse of Ultrashort Pulses,” Phys. Rev. Lett.84(16), 3582–3585 (2000). [CrossRef] [PubMed]
  34. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett.23(5), 382–384 (1998). [CrossRef] [PubMed]
  35. S. Skupin, L. Bergé, U. Peschel, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Wöste, R. Bourayou, and R. Sauerbrey, “Filamentation of femtosecond light pulses in the air: Turbulent cells versus long-range clusters,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(4), 046602 (2004). [CrossRef] [PubMed]
  36. S. C. Wilks, J. M. Dawson, and W. B. Mori, “Frequency Up-Conversion of Electromagnetic Radiation with Use of an Overdense Plasma,” Phys. Rev. Lett.61(3), 337–340 (1988). [CrossRef] [PubMed]
  37. W. M. Wood, C. W. Siders, and M. C. Downer, “Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,” Phys. Rev. Lett.67(25), 3523–3526 (1991). [CrossRef] [PubMed]
  38. E. Yablonovitch, “Self-phase modulation and short-pulse generation from laser-breakdown plasmas,” Phys. Rev. A10(5), 1888–1895 (1974). [CrossRef]
  39. P. Béjot, E. Cormier, E. Hertz, B. Lavorel, J. Kasparian, J.-P. Wolf, and O. Faucher, “High-field quantum calculation reveals time-dependent negative Kerr contribution,” Phys. Rev. Lett.110(4), 043902 (2013). [CrossRef]
  40. E. Treacy, “Optical pulse compression with diffraction gratings,” Quantum Electronics, IEEE Journal of5(9), 454–458 (1969). [CrossRef]
  41. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed., Optics and Photonics (Academic Press, 2001).
  42. P. Whalen, J. V. Moloney, and M. Kolesik, “Self-focusing collapse distance in ultrashort pulses and measurement of nonlinear index,” Opt. Lett.36(13), 2542–2544 (2011). [CrossRef] [PubMed]
  43. Z. Chang, “Single attosecond pulse and xuv supercontinuum in the high-order harmonic plateau,” Phys. Rev. A70(4), 043802 (2004). [CrossRef]
  44. M. D. Feit and J. J. A. Fleck, “Effect of refraction on spot-size dependence of laser-induced breakdown,” Appl. Phys. Lett.24(4), 169–172 (1974). [CrossRef]
  45. A. Perelomov, V. Popov, and M. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP23, 924–934 (1966).
  46. A. Talebpour, J. Yang, and S. L. Chin, “Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti:sapphire laser pulse,” Opt. Commun.163(1-3), 29–32 (1999). [CrossRef]
  47. C. Brée, A. Demircan, S. Skupin, L. Bergé, and G. Steinmeyer, “Plasma induced pulse breaking in filamentary self-compression,” Laser Phys.20(5), 1107–1113 (2010). [CrossRef]
  48. A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett.22(5), 304–306 (1997). [CrossRef] [PubMed]
  49. J. Schwarz, P. Rambo, M. Kimmel, and B. Atherton, “Measurement of nonlinear refractive index and ionization rates in air using a wavefront sensor,” Opt. Express20(8), 8791–8803 (2012). [CrossRef] [PubMed]
  50. J. Odhner and R. J. Levis, “Direct phase and amplitude characterization of femtosecond laser pulses undergoing filamentation in air,” Opt. Lett.37(10), 1775–1777 (2012). [CrossRef] [PubMed]
  51. P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express18(20), 21504–21510 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited