OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29462–29487

Three dimensional single molecule localization using a phase retrieved pupil function

Sheng Liu, Emil B. Kromann, Wesley D. Krueger, Joerg Bewersdorf, and Keith A. Lidke  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29462-29487 (2013)
http://dx.doi.org/10.1364/OE.21.029462


View Full Text Article

Enhanced HTML    Acrobat PDF (11740 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Localization-based superresolution imaging is dependent on finding the positions of individual fluorophores in a sample by fitting the observed single-molecule intensity pattern to the microscope point spread function (PSF). For three-dimensional imaging, system-specific aberrations of the optical system can lead to inaccurate localizations when the PSF model does not account for these aberrations. Here we describe the use of phase-retrieved pupil functions to generate a more accurate PSF and therefore more accurate 3D localizations. The complex-valued pupil function contains information about the system-specific aberrations and can thus be used to generate the PSF for arbitrary defocus. Further, it can be modified to include depth dependent aberrations. We describe the phase retrieval process, the method for including depth dependent aberrations, and a fast fitting algorithm using graphics processing units. The superior localization accuracy of the pupil function generated PSF is demonstrated with dual focal plane 3D superresolution imaging of biological structures.

© 2013 Optical Society of America

OCIS Codes
(100.5070) Image processing : Phase retrieval
(100.6640) Image processing : Superresolution
(100.6890) Image processing : Three-dimensional image processing
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Image Processing

History
Original Manuscript: September 24, 2013
Revised Manuscript: November 4, 2013
Manuscript Accepted: November 7, 2013
Published: November 21, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Sheng Liu, Emil B. Kromann, Wesley D. Krueger, Joerg Bewersdorf, and Keith A. Lidke, "Three dimensional single molecule localization using a phase retrieved pupil function," Opt. Express 21, 29462-29487 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29462


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. J.  Rust, M.  Bates, X.  Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006). [CrossRef] [PubMed]
  2. E.  Betzig, G. H.  Patterson, R.  Sougrat, O. W.  Lindwasser, S.  Olenych, J. S.  Bonifacino, M. W.  Davidson, J.  Lippincott-Schwartz, H. F.  Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006). [CrossRef] [PubMed]
  3. S. T.  Hess, T. P. K.  Girirajan, M. D.  Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006). [CrossRef] [PubMed]
  4. M.  Heilemann, S.  van de Linde, M.  Schüttpelz, R.  Kasper, B.  Seefeldt, A.  Mukherjee, P.  Tinnefeld, M.  Sauer, “Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes,” Angew. Chem. Int. Ed. 47, 6172–6176 (2008). [CrossRef]
  5. J.  Fölling, V.  Belov, D.  Riedel, A.  Schönle, A.  Egner, C.  Eggeling, M.  Bossi, S. W.  Hell, “Fluorescence Nanoscopy with Optical Sectioning by Two–Photon Induced Molecular Switching using Continuous–Wave Lasers,” Chem. Phys. Chem 9, 321–326 (2008). [CrossRef]
  6. R. P. J.  Nieuwenhuizen, K. A.  Lidke, M.  Bates, D. L.  Puig, D.  Grünwald, S.  Stallinga, B.  Rieger, “Measuring image resolution in optical nanoscopy,” Nat.Methods 10, 557–562 (2013). [CrossRef] [PubMed]
  7. S.  Stallinga, B.  Rieger, “Accuracy of the gaussian point spread function model in 2D localization microscopy,” Opt. Express 18, 24461–24476 (2010). [CrossRef] [PubMed]
  8. M. F.  Juette, T. J.  Gould, M. D.  Lessard, M. J.  Mlodzianoski, B. S.  Nagpure, B. T.  Bennett, S. T.  Hess, J.  Bewersdorf, “Three-dimensional sub100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods 5, 527–529 (2008). [CrossRef] [PubMed]
  9. S.  Ram, P.  Prabhat, J.  Chao, E. S.  Ward, R. J.  Ober, “High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells,” Biophys. J. 95, 6025–6043 (2008). [CrossRef] [PubMed]
  10. B.  Huang, W.  Wang, M.  Bates, X.  Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008). [CrossRef] [PubMed]
  11. S. R. P.  Pavani, M. A.  Thompson, J. S.  Biteen, S. J.  Lord, N.  Liu, R. J.  Twieg, R.  Piestun, W. E.  Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA. 106, 2995–2999 (2009). [CrossRef] [PubMed]
  12. H.  Kirshner, F.  Aguet, D.  Sage, D.  Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249, 13–25 (2012). [CrossRef] [PubMed]
  13. M. J.  Mlodzianoski, M. F.  Juette, G. L.  Beane, J.  Bewersdorf, “Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy,” Opt. Express 17, 8264–8277 (2009). [CrossRef] [PubMed]
  14. A. G.  York, A.  Ghitani, A.  Vaziri, M. W.  Davidson, H.  Shroff, “Confined activation and subdiffractive localization enables whole-cell PALM with genetically expressed probes,” Nat. Methods 8, 327–333 (2011). [CrossRef] [PubMed]
  15. E.  Toprak, H.  Balci, B. H.  Blehm, P. R.  Selvin, “Three-dimensional particle tracking via bifocal imaging,” Nano Lett. 7, 2043–2045 (2007) [CrossRef] [PubMed]
  16. K. I.  Mortensen, L. S.  Churchman, J. A.  Spudich, H.  Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7, 377–381 (2010). [CrossRef] [PubMed]
  17. B.  Richards, E.  Wolf, “Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253, 358–379 (1959). [CrossRef]
  18. B. M.  Hanser, M. G. L.  Gustafsson, D. A.  Agard, J. W.  Sedat, “Phase retrieval for high-numerical-aperture optical systems,” Opt. Lett. 28, 801–803 (2003). [CrossRef] [PubMed]
  19. B. M.  Hanser, M. G. L.  Gustafsson, D. A.  Agard, J. W.  Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microsc. 216, 32–48 (2004). [CrossRef] [PubMed]
  20. E. B.  Kromann, T. J.  Gould, M. F.  Juette, J. E.  Wilhjelm, J.  Bewersdorf, “Quantitative Pupil Analysis in STED Microscopy Using Phase Retrieval,” Opt. Lett. 37, 1805–1807 (2012). [CrossRef] [PubMed]
  21. M. R.  Foreman, C. L.  Giusca, P.  Török, R. K.  Leach, “Phase–retrieved pupil function and coherent transfer function in confocal microscopy,” J. Microsc. 251, 99–107 (2013). [CrossRef] [PubMed]
  22. S.  Quirin, S. R. P.  Pavani, R.  Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. USA. 109, 675–679 (2011). [CrossRef]
  23. J. W.  Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005), pp.31–50.
  24. R. W.  Gerchberg, W. O.  Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  25. J. C.  Wyant, K.  Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, VOL. XI (Academic Press, Arizona, 1992), pp.27–39.
  26. M.  Sambridge, K.  Mosegaard, “Monte Carlo methods in geophysical inverse problems,” Reviews of Geophysics 40, 1–29 (2002). [CrossRef]
  27. S. F.  Gibson, F.  Lanni, “Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy,” J. Opt. Soc. Am. A 19, 1601–1613 (1991) [CrossRef]
  28. D.  Axelrod, “Fluorescence excitation and imaging of single molecules near dielectric coated and bare surfaces: a theoretical study,” J. Microsc. 247, 147–160 (2012). [CrossRef] [PubMed]
  29. D.  Axelrod, “Evanescent Excitation and Emission in Fluorescence Microscopy,” Biophys. J. 7, 1401–1409 (2013). [CrossRef]
  30. J.  Enderlein, T.  Ruckstuhl, S.  Seeger, “Highly efficient optical detection of surface-generated fluorescence,” Appl. Opt. 38, 724–732 (1999). [CrossRef]
  31. J.  Enderlein, I.  Gregor, T.  Ruckstuhl, “Imaging properties of supercritical angle fluorescence optics,” Opt. Express 19, 8011–8018 (2011). [CrossRef] [PubMed]
  32. S.  Stallinga, “Compact description of substrate-related aberrations in high numerical-aperture optical disk readout,” Appl. Opt. 44, 849–858 (2005). [CrossRef] [PubMed]
  33. B.  Huang, S. A.  Jones, B.  Brandenburg, X.  Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5, 1047–1052 (2008). [CrossRef] [PubMed]
  34. NVIDIA, “Compute unified device architecture (CUDA),” (2007), http://www.nvidia.com/object/cuda_home_new.html .
  35. C. S.  Smith, N.  Joseph, B.  Rieger, K. A.  Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods 7, 373–375 (2010). [CrossRef] [PubMed]
  36. F.  Huang, S. L.  Schwartz, J. M.  Byars, K. A.  Lidke, “Simultaneous multiple-emitter fitting for single molecule super-resolution imaging,” Biomed. Opt. Express 2, 1377–1393 (2011). [CrossRef] [PubMed]
  37. F.  Aguet, D.  Van De Ville, M.  Unser, “A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles,” Opt. Express 13, 10503–10522 (2005). [CrossRef] [PubMed]
  38. M. F.  Juette, J.  Bewersdorf, “Three-dimensional tracking of single fluorescent particles with submillisecond temporal resolution,” Nano Lett. 10, 4657–4663 (2010). [CrossRef] [PubMed]
  39. K. A.  Lidke, B.  Rieger, D. S.  Lidke, T. M.  Jovin, “The role of photon statistics in fluorescence anisotropy imaging,” IEEE T. Image Process. 14, 1237–1245 (2005). [CrossRef]
  40. C. L.  Luengo Hendriks, B.  Rieger, M.  van Ginkel, G. M. P.  van Kempen, L. J.  van Vliet, “DIPimage: A scientific image processing toolbox for MATLAB,” Delft Univ. Technol., Delft, The Netherlands. (1999), http://www.diplib.org/dipimage .
  41. M. S.  Alam, J. G.  Bognar, R. C.  Hardie, B. J.  Yasuda, “High-resolution infrared image reconstruction using multiple randomly shifted low-resolution aliased frames,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing VIII, Proc. SPIE 3063, 102–112 (SPIE Press1997). [CrossRef]
  42. S.  Ram, J.  Chao, P.  Prabhat, E. S.  Ward, R. J.  Ober, “A novel approach to determining the three-dimensional location of microscopic objects with applications to 3D particle tracking,” Proc. SPIE 6443, 6443(2007). [CrossRef]
  43. M.V.  Klein, T. E.  Furtak, Optics (John Wiley & Sons, Inc. 1986), pp.76–80, 295–300.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited