OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29516–29522

1.06μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber

Zhengqian Luo, Yizhong Huang, Jian Weng, Huihui Cheng, Zhiqing Lin, Bin Xu, Zhiping Cai, and Huiying Xu  »View Author Affiliations

Optics Express, Vol. 21, Issue 24, pp. 29516-29522 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2192 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Passive Q-switching of an ytterbium-doped fiber (YDF) laser with few-layer topological insulator (TI) is, to the best of our knowledge, experimentally demonstrated for the first time. The few-layer TI: Bi2Se3 (2–4 layer thickness) is firstly fabricated by the liquid-phase exfoliation method, and has a low saturable optical intensity of 53 MW/cm2 measured by the Z-scan technique. The optical deposition technique is used to induce the few-layer TI in the solution onto a fiber ferrule for successfully constructing the fiber-integrated TI-based saturable absorber (SA). By inserting this SA into the YDF laser cavity, stable Q-switching operation at 1.06 μm is achieved. The Q-switched pulses have the shortest pulse duration of 1.95 μs, the maximum pulse energy of 17.9 nJ and a tunable pulse-repetition-rate from 8.3 to 29.1 kHz. Our results indicate that the TI as a SA is also available at 1 μm waveband, revealing its potential as another broadband SA (like graphene).

© 2013 Optical Society of America

OCIS Codes
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3615) Lasers and laser optics : Lasers, ytterbium
(160.4236) Materials : Nanomaterials
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 25, 2013
Revised Manuscript: November 9, 2013
Manuscript Accepted: November 13, 2013
Published: November 21, 2013

Zhengqian Luo, Yizhong Huang, Jian Weng, Huihui Cheng, Zhiqing Lin, Bin Xu, Zhiping Cai, and Huiying Xu, "1.06μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber," Opt. Express 21, 29516-29522 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state laser,” IEEE J. Sel. Top. Quantum Electron.2, 435–453 (1996). [CrossRef]
  2. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers,” Opt. Lett.29, 1581–1583 (2004). [CrossRef] [PubMed]
  3. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009). [CrossRef]
  4. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19, 3077–3083 (2009). [CrossRef]
  5. Z. P. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Q. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4, 803–810 (2010). [CrossRef] [PubMed]
  6. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express17, 17630–17635 (2009). [CrossRef] [PubMed]
  7. Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96, 051122 (2010). [CrossRef]
  8. J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser,” Opt. Lett.36, 4008–4010 (2011). [CrossRef] [PubMed]
  9. G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz,” Appl. Phys. Lett.100, 161109 (2012). [CrossRef]
  10. C. J. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. C. Wen, and D. Y. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett.101, 211106 (2012). [CrossRef]
  11. C. J. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker,” Opt. Express20, 27888–27895 (2012). [CrossRef] [PubMed]
  12. F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” in Nonlinear Photonics (Optical Society of America, 2012), NTh1A.5.
  13. P. Tang, X. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er: YAG ceramic laser,” IEEE Photonics J.5, 1500707 (2013). [CrossRef]
  14. H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3, Sb2Te3 with a single dirac cone on the surface,” Nat. Phys.5, 438–442 (2009). [CrossRef]
  15. S. B. Lu, C. J. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. C. Wen, and D. Y. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express21, 2072–2082 (2013). [CrossRef] [PubMed]
  16. N. Bansal, Y. S. Kim, E. Edrey, M. Brahlek, Y. Horibe, K. Iida, M. Tanimura, G. H. Li, T. Feng, and H. D. Lee, “Epitaxial growth of topological insulator Bi2Se3 film on si (111) with atomically sharp interface,” Thin Solid Films520, 224–229 (2011). [CrossRef]
  17. Y.-H. Lin, C.-Y. Yang, J.-H. Liou, C.-P. Yu, and G.-R. Lin, “Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave modelocking of fiber laser,” Opt. Express21, 16763–16777 (2013). [CrossRef] [PubMed]
  18. S. Lu, S. Chen, Z. Zheng, H. Zhang, C. Zhao, and S. Wen, “Saturable absorption in graphene at 800 nm band,” Proc. SPIE8555, 855512 (2012). [CrossRef]
  19. Z. Q. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, and Z. P. Cai, “Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser,” Opt. Lett.35, 3709–3711 (2010). [CrossRef] [PubMed]
  20. A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express18, 23054–23061 (2010). [CrossRef] [PubMed]
  21. D. P. Zhou, L. Wei, B. Dong, and W. K. Liu, “Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett.22, 9–11 (2010). [CrossRef]
  22. R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. Offerhaus, and D. Richardson, “Passively Q-switched 0.1-mJ fiber laser system at 1.53 μ m,” Opt. Lett.24, 388–390 (1999). [CrossRef]
  23. D. Popa, Z. P. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98, 073106 (2011). [CrossRef]
  24. W. Cao, H. Wang, A. P. Luo, Z. C Luo, and W. C. Xu, “Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser,” Laser Phys. Lett., 9, 54–57 (2012). [CrossRef]
  25. Z. Q. Luo, M. Zhou, D. Wu, C. Ye, J. Weng, J. Dong, H. Xu, Z. Cai, and L. Chen, “Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped fiber lasers,” J. Lightwave Technol.29, 2732–2739 (2011). [CrossRef]
  26. J. J. Zayhowski and P. L. Kelley, “Optimization of Q-switched lasers,” IEEE J. Quantum Electron.27, 2220–2225 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited