OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29523–29543

Computational phase modulation in light field imaging

Tomoya Nakamura, Ryoichi Horisaki, and Jun Tanida  »View Author Affiliations

Optics Express, Vol. 21, Issue 24, pp. 29523-29543 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4697 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a scheme for modulating phase computationally in light field imaging systems. In a camera system based on the scheme, light field (LF) data is obtained by array-based optics, and the data is computationally projected into a single image with arbitrary phase modulation. In a projector system based on the scheme, LF data with arbitrary phase modulation is computationally generated before optical projection, and the phase-modulated image is projected by array-based optics. We describe the system design and required conditions based on the sampling theorem. We experimentally verified the proposed scheme based on camera and projector systems. In the experiment, we demonstrated a super-resolution camera and projector with extended depth-of-field without estimating the object’s shape.

© 2013 Optical Society of America

OCIS Codes
(110.4190) Imaging systems : Multiple imaging
(110.1758) Imaging systems : Computational imaging

ToC Category:
Imaging Systems

Original Manuscript: October 2, 2013
Revised Manuscript: November 15, 2013
Manuscript Accepted: November 15, 2013
Published: November 21, 2013

Tomoya Nakamura, Ryoichi Horisaki, and Jun Tanida, "Computational phase modulation in light field imaging," Opt. Express 21, 29523-29543 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell.14, 99–106 (1992). [CrossRef]
  2. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt.40, 1806–1813 (2001). [CrossRef]
  3. M. Levoy and P. Hanrahan, “Light field rendering,” in Proc. ACM SIGGRAPH(1996), pp. 31–42.
  4. A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameterized light fields,” in Proc. ACM SIGGRAPH(2000), pp. 297–306.
  5. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Report CTSR 2005-02 (2005).
  6. R. Horisaki, S. Irie, Y. Ogura, and J. Tanida, “Three-dimensional information acquisition using a compound imaging system,” Opt. Rev.14, 347–350 (2007). [CrossRef]
  7. T. E. Bishop and P. Favaro, “The light field camera: extended depth of field, aliasing, and superresolution,” IEEE Trans. Pattern Anal. Mach. Intell.34, 972–986 (2012). [CrossRef]
  8. Y. Kitamura, R. Shogenji, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, J. Tanida, and Y. Ichioka, “Reconstruction of a high-resolution image on a compound-eye image-capturing system,” Appl. Opt.43, 1719–1727 (2004). [CrossRef] [PubMed]
  9. T. E. Bishop, S. Zenetti, and P. Favaro, “Light field superresolution,” in Proc. IEEE International Conference on Computational Photography (ICCP)(2009), pp. 1–9.
  10. S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag.20, 21–36 (2003). [CrossRef]
  11. S. A. Shroff and K. Berkner, “Image formation analysis and high resolution image reconstruction for plenoptic imaging systems,” Appl. Opt.52, D22–D31 (2013). [CrossRef] [PubMed]
  12. R. Horisaki, K. Kagawa, Y. Nakao, T. Toyoda, Y. Masaki, and J. Tanida, “Irregular lens arrangement design to improve imaging performance of compound-eye imaging systems,” Appl. Phys. Express3, 022501 (2010). [CrossRef]
  13. R. Horisaki and J. Tanida, “Full-resolution light-field single-shot acquisition with spatial encoding,” in Imaging and Applied Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuB5. [CrossRef]
  14. Z. Xu, J. Ke, and E. Y. Lam, “High-resolution lightfield photography using two masks,” Opt. Express20, 10971–10983 (2012). [CrossRef] [PubMed]
  15. K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” ACM Trans. Graph.32, 1–11 (2013). [CrossRef]
  16. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt.34, 1859–1866 (1995). [CrossRef] [PubMed]
  17. P. Mouroulis, “Depth of field extension with spherical optics,” Opt. Express16, 12995–13004 (2008). [CrossRef] [PubMed]
  18. T. Nakamura, R. Horisaki, and J. Tanida, “Computational superposition compound eye imaging for extended depth-of-field and field-of-view,” Opt. Express20, 27482–27495 (2012). [CrossRef] [PubMed]
  19. O. Cossairt, C. Zhou, and S. K. Nayar, “Diffusion coded photography for extended depth of field,” ACM Trans. Graph.29, 1–10 (2010). [CrossRef]
  20. P. Pentland, “A new sense for depth of field,” IEEE Trans. Pattern Anal. Mach. Intell.9, 523–531 (1987). [CrossRef] [PubMed]
  21. G. E. Johnson, E. R. Dowski, and W. T. Cathey, “Passive ranging through wave-front coding: information and application,” Appl. Opt.39, 1700–1710 (2000). [CrossRef]
  22. A. Greengard, Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett.31, 181–183 (2006). [CrossRef] [PubMed]
  23. C. Zhou, O. Cossairt, and S. K. Nayar, “Depth from diffusion,” in IEEE International Conference on Computer Vision and Pattern Recognition (CVPR)(2010), pp.1–8.
  24. A. Ashok and M. A. Neifeld, “Pseudorandom phase masks for superresolution imaging from subpixel shifting,” Appl. Opt.46, 2256–2268 (2007). [CrossRef] [PubMed]
  25. A. Ashok and M. A. Neifeld, “Information-based analysis of simple incoherent imaging systems,” Opt. Express11, 2153–2162 (2003). [CrossRef] [PubMed]
  26. J. Chai, X. Tong, S. Chan, and H. Shum, “Plenoptic sampling,” in Proc. ACM SIGGRAPH(2000), pp. 307–318.
  27. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  28. S. S. Sherif, W. T. Cathey, and E. R. Dowski, “Phase plate to extend the depth of field of incoherent hybrid imaging systems,” Appl. Opt.43, 2709–2721 (2004). [CrossRef] [PubMed]
  29. W. Zhang, Z. Ye, T. Zhao, Y. Chen, and F. Yu, “Point spread function characteristics analysis of the wavefront coding system,” Opt. Express15, 1543–1552 (2007). [CrossRef] [PubMed]
  30. Y. Takahashi and S. Komatsu, “Optimized free-form phase mask for extension of depth of field in wavefront-coded imaging,” Opt. Lett.33, 1515–1517 (2008). [CrossRef] [PubMed]
  31. T. Nakamura, R. Horisaki, and J. Tanida, “Computational superposition projector for extended depth of field and field of view,” Opt. Lett.9, 1560–1562 (2013). [CrossRef]
  32. M. Sieler, P. Schreiber, P. Dannberg, A. Bräuer, and A. Tünnermann, “Ultraslim fixed pattern projectors with inherent homogenization of illumination,” Appl. Opt.51, 64–74 (2012). [CrossRef] [PubMed]
  33. M. Grosse, G. Wetztein, A. Grundhöfer, and O. Bimber, “Coded aperture projection,” ACM Trans. Graph.29, 1–12 (2010). [CrossRef]
  34. R. Horisaki and J. Tanida, “Compact compound-eye projector using superresolved projection,” Opt. Lett.36, 121–123 (2011). [CrossRef] [PubMed]
  35. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am.62, 55–59 (1972). [CrossRef]
  36. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J.79, 745–754 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited