OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29544–29557

Ultra-long-range symmetric plasmonic waveguide for high-density and compact photonic devices

Chia-Chien Huang  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29544-29557 (2013)
http://dx.doi.org/10.1364/OE.21.029544


View Full Text Article

Enhanced HTML    Acrobat PDF (2610 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study reports a symmetric hybrid plasmonic waveguide consisting of a cylindrical metal nanowire surrounded by low-index SiO2 and high-index Si covered with SiO2. The symmetric circumambience relative to the metal nanowire significantly facilitates the present design to minimize the energy attenuation resulting from Ohmic losses while retaining highly confined modes guided in the low-index nanoscale gaps between the metal nanowire and the high-index Si. The geometric dependence of the mode characteristics on the proposed structure is analyzed in detail, showing long propagation lengths beyond 10 mm with normalized mode areas on the order of 10−2. In addition to enabling the building of long-range plasmonic circuit interconnects, the compactness and high-density integration of the proposed structure are examined by analyzing crosstalk in a directional coupler composed of two such waveguides and bending losses for a 90° bend. A relatively short coupling length of 1.16 μm is obtained at a center-to-center separation of 0.26 μm between adjacent waveguides. Increasing the separation to 1.65 μm could completely prevent coupling between waveguides. Power transmission exceeds 80% in the case of a 90° bend with small radius of curvature of 0.5 μm. Moreover, the dependence of spectral response on coupling length and the transmission of a 90° bend, ranging from telecom wavelengths of 1.40 to 1.65 μm, are investigated. Over a wide wavelength range, a strong coupling length dependence on wavelength and a high transmission for a 90° bend also make the proposed plasmonic waveguide promising for the realization of wavelength-selective components.

© 2013 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

History
Original Manuscript: October 8, 2013
Revised Manuscript: November 18, 2013
Manuscript Accepted: November 18, 2013
Published: November 21, 2013

Citation
Chia-Chien Huang, "Ultra-long-range symmetric plasmonic waveguide for high-density and compact photonic devices," Opt. Express 21, 29544-29557 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29544


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett.22(7), 475–477 (1997). [CrossRef] [PubMed]
  3. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000). [CrossRef]
  4. P. Berini, “Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,” Opt. Express7(10), 329–335 (2000). [CrossRef] [PubMed]
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  6. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett.87(6), 061106 (2005). [CrossRef]
  7. M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B24(9), 2333–2342 (2007). [CrossRef]
  8. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100(2), 023901 (2008). [CrossRef] [PubMed]
  9. G. Veronis and S. H. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30(24), 3359–3361 (2005). [CrossRef] [PubMed]
  10. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon polariton waveguides,” Phys. Rev. B75(24), 245405 (2007). [CrossRef]
  11. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008). [CrossRef]
  12. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  13. X. D. Yang, Y. Liu, R. F. Oulton, X. B. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett.11(2), 321–328 (2011). [CrossRef] [PubMed]
  14. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. B. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2(331), 1–5 (2011).
  15. Y. J. Lu, J. S. Kim, H. Y. Chen, C. H. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. G. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. G. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science337(6093), 450–453 (2012). [CrossRef] [PubMed]
  16. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express18(12), 12971–12979 (2010). [CrossRef] [PubMed]
  17. D. X. Dai and S. L. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express18(17), 17958–17966 (2010). [CrossRef] [PubMed]
  18. X. L. Zuo and Z. J. Sun, “Low-loss plasmonic hybrid optical ridge waveguide on silicon-on-insulator substrate,” Opt. Lett.36(15), 2946–2948 (2011). [CrossRef] [PubMed]
  19. Y. S. Bian, Z. Zheng, Y. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express19(23), 22417–22422 (2011). [CrossRef] [PubMed]
  20. C. C. Huang, “Hybrid plasmonic waveguide comprising a semiconductor nanowire and metal ridge for low-loss propagation and nanoscale confinement,” IEEE J. Sel. Top. Quantum Electron.18(6), 1661–1668 (2012). [CrossRef]
  21. P. F. Yang, Z. G. Di, and H. X. Xu, “Low-loss light transmission in a rectangular-shaped hybrid metal trench at 1550 nm,” Opt. Express21(14), 17053–17059 (2013). [CrossRef] [PubMed]
  22. R. Adato and J. P. Guo, “Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-polariton modes by thin dielectric layers,” J. Appl. Phys.105(3), 034306 (2009). [CrossRef]
  23. B. F. Yun, G. H. Hu, Y. Ji, and Y. P. Cui, “Characteristics analysis of a hybrid surface plasmonic waveguide with nanometric confinement and high optical intensity,” J. Opt. Soc. Am. B26(10), 1924–1929 (2009). [CrossRef]
  24. Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express17(23), 21320–21325 (2009). [CrossRef] [PubMed]
  25. T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express18(22), 23009–23015 (2010). [CrossRef] [PubMed]
  26. Y. Kou, F. W. Ye, and X. F. Chen, “Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration,” Opt. Express19(12), 11746–11752 (2011). [CrossRef] [PubMed]
  27. L. Chen, X. Li, G. P. Wang, W. Li, S. H. Chen, L. Xiao, and D. S. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol.30(1), 163–168 (2012). [CrossRef]
  28. Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012). [CrossRef]
  29. L. Chen, T. Zhang, X. Li, and W. P. Huang, “Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film,” Opt. Express20(18), 20535–20544 (2012). [CrossRef] [PubMed]
  30. V. S. Volkov, Z. H. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett.36(21), 4278–4280 (2011). [CrossRef] [PubMed]
  31. C. Xiang and J. Wang, “Long-range hybrid plasmonic slot waveguide,” IEEE Photon. J.5(2), 4800311 (2013). [CrossRef]
  32. V. A. Zenin, Z. H. Han, V. S. Volkov, K. Leosson, I. P. Radko, and S. I. Bozhevolnyi, “Directional coupling in long-range dielectric-loaded plasmonic waveguides,” Opt. Express21(7), 8799–8807 (2013). [CrossRef] [PubMed]
  33. X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009). [CrossRef] [PubMed]
  34. Y. G. Ma, X. Y. Li, H. K. Yu, L. M. Tong, Y. Gu, and Q. H. Gong, “Direct measurement of propagation losses in silver nanowires,” Opt. Lett.35(8), 1160–1162 (2010). [CrossRef] [PubMed]
  35. Y. S. Bian and Q. H. Gong, “Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes,” Opt. Express21(20), 23907–23920 (2013). [CrossRef] [PubMed]
  36. M. Bass, C. Decusatis, J. Enoch, V. Lakshminarayanan, G. F. Li, C. Macdonald, V. Mahajan, and E. V. Stryland, Handbook of Optics, Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill Professional, 2009).
  37. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  38. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), Chap. 1.
  39. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  40. R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express15(19), 12174–12182 (2007). [CrossRef] [PubMed]
  41. C. Y. Jeong, M. Kim, and S. Kim, “Circular hybrid plasmonic waveguide with ultra-long propagation distance,” Opt. Express21(14), 17404–17412 (2013). [CrossRef] [PubMed]
  42. S. M. García-Blanco, M. Pollnau, and S. I. Bozhevolnyi, “Loss compensation in long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express19(25), 25298–25311 (2011). [CrossRef] [PubMed]
  43. G. Magno, M. Grande, V. Petruzzelli, and A. D’Orazio, “Asymmetric hybrid double dielectric loaded plasmonic waveguides for sensing applications,” Sens. Actuators B Chem.186(0), 148–155 (2013). [CrossRef]
  44. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett.26(23), 1888–1890 (2001). [CrossRef] [PubMed]
  45. W. P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A.11(3), 963–983 (1994)
  46. G. Veronis and S. H. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express16(3), 2129–2140 (2008). [CrossRef] [PubMed]
  47. W. P. Huang, C. Xu, S. T. Chu, and S. K. Chaudhuri, “The finite-difference vector beam propagation method: analysis and assessment,” J. Lightwave Technol.10(3), 295–305 (1992). [CrossRef]
  48. A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B78(4), 045425 (2008). [CrossRef]
  49. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17(19), 16646–16653 (2009). [CrossRef] [PubMed]
  50. A. Amirhosseini and R. Safian, “A hybrid plasmonic waveguide for the propagation of surface plasmon polariton at 1.55 μm on SOI substrate,” IEEE Trans. NanoTechnol.12(6), 1031–1036 (2013). [CrossRef]
  51. V. R. Chinni, T. C. Huang, P. K. A. Wai, C. R. Menyuk, and G. J. Simonis, “Crosstalk in a lossy directional coupler switch,” J. Lightwave Technol.13(7), 1530–1535 (1995). [CrossRef]
  52. P. Berini and J. J. Lu, “Curved long-range surface plasmon-polariton waveguides,” Opt. Express14(6), 2365–2371 (2006). [CrossRef] [PubMed]
  53. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express18(12), 12971–12979 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited