OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29567–29577

Chaotic chirped-pulse oscillators

Evgeni Sorokin, Nikolai Tolstik, Vladimir L. Kalashnikov, and Irina T. Sorokina  »View Author Affiliations

Optics Express, Vol. 21, Issue 24, pp. 29567-29577 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2008 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present results of experimental investigation of the chaotic and quasi-periodic regime in the chirped-pulsed (dissipative soliton) Cr:ZnS and Cr:ZnSe mid-IR oscillators with significant third-order dispersion. The instability develops when the spectrum edge approaches resonance with a linear wave either due to power increase or by dispersion adjustment. In practice, this occurs when the spectrum edge reaches zero dispersion wavelength. The analysis suggests a three-oscillator chaos model, which is confirmed by numerical simulations. The regime is long-term stable and can be easily overlooked in similar systems. We show that chaotic regime is accompanied by a characteristic spectral shape and can be reliably recognized by using wavelength-skewed filters and by second-harmonic or two-photon absorption detectors.

© 2013 Optical Society of America

OCIS Codes
(140.1540) Lasers and laser optics : Chaos
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(190.3100) Nonlinear optics : Instabilities and chaos

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 17, 2013
Revised Manuscript: November 12, 2013
Manuscript Accepted: November 12, 2013
Published: November 22, 2013

Virtual Issues
Nonlinear Optics (2013) Optics Express

Evgeni Sorokin, Nikolai Tolstik, Vladimir L. Kalashnikov, and Irina T. Sorokina, "Chaotic chirped-pulse oscillators," Opt. Express 21, 29567-29577 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B27, 1978–1982 (2010). [CrossRef]
  2. V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B83, 503–510 (2006). [CrossRef]
  3. T. M. Kardas, W. Gadomski, B. Ratajska-Gadomska, and P. Wasylczyk, “Automodulations in an extended cavity, passively modelocked Ti:Sapphire oscillator - period doubling and chaos,” Opt. Express18, 26989–26994 (2010). [CrossRef]
  4. E. Sorokin, V. L. Kalashnikov, J. Mandon, G. Guelachvili, N. Picque, and I. T. Sorokina, “Cr4+:YAG chirped-pulse oscillator,” New J. Phys.10, 083022 (2008). [CrossRef]
  5. S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, “Generation of double-scale femto/pico-secondoptical lumps in mode-locked fiber lasers,” Opt. Express17, 20707–20713 (2009). [CrossRef] [PubMed]
  6. L. Wang, X. Liu, Y. Gong, D. Mao, and L. Duan, “Observations of four types of pulses in a fiber laser with large net-normal dispersion,” Opt. Express19, 7616–7624 (2011). [CrossRef] [PubMed]
  7. P. Junsong, Z. Li, G. Zhaochang, L. Jinmei, L. Shouyu, S. Xuehao, and S. Qishun, “Modulation instability in dissipative soliton fiber lasers and its application on cavity net dispersion measurement,” J. Lightwave Technol.30, 2707–2712 (2012). [CrossRef]
  8. S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, “Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation,” Opt. Express20, 27447–27453 (2012). [CrossRef] [PubMed]
  9. Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, and K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett.103, 011103 (2013). [CrossRef]
  10. N. Tolstik, E. Sorokin, and I. T. Sorokina, “Kerr-lens mode-locked Cr:ZnS laser,” Opt. Lett.38, 299–301 (2013). [CrossRef] [PubMed]
  11. E. Sorokin and I. T. Sorokina, “Ultrashort-pulsed Kerr-lens modelocked Cr:ZnSe laser,” in European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference - CLEO Europe - EQEC, (IEEE, München, 2009), p. CF1_3.
  12. E. Sorokin, N. Tolstik, and I. T. Sorokina, “1 Watt femtosecond mid-IR Cr:ZnS laser,” Proc. SPIE8599, 859916 (2013). [CrossRef]
  13. V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Chirped dissipative soliton absorption spectroscopy,” Opt. Express19, 17480–17492 (2011). [CrossRef] [PubMed]
  14. N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman and Hall, 1997), Vol. 4.
  15. E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” JETP Lett.82, 467–471 (2005). [CrossRef]
  16. V. L. Kalashnikov, A. Fernández, and A. Apolonski, “High-order dispersion in chirped-pulse oscillators,” Opt. Express16, 4206–4216 (2008). [CrossRef] [PubMed]
  17. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B69, 327–332 (1999). [CrossRef]
  18. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).
  19. V. L. Kalashnikov, “Dissipative solitons: perturbations and chaos formation,” in Chaos Theory. Modeling, Simulation and Applications, C. H. Skiadas, I. Dimotikalis, and C. Skiadas, eds. (World Scientific, 2011), pp. 199–206.
  20. N. Tolstik, I. T. Sorokina, and E. Sorokin, “Watt-level Kerr-lens mode-locked Cr:ZnS laser at 2.4 μm,” in CLEO: Science and Innovations (Optical Society of America, San Jose, 2013), p. CTh1H.2.
  21. C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron.30, 1100–1114 (1994). [CrossRef]
  22. N. Tolstik, I. T. Sorokina, A. Pospischil, and E. Sorokin, “Graphene mode-locked Cr:ZnS laser with 44 fs pulse duration,” in Advanced Solid-State Lasers Congress, M. Ebrahim-Zadeh and I. Sorokina, eds. (Optical Society of America, Paris, 2013), p. MW1C.1.
  23. V. L. Kalashnikov and E. Sorokin, “Soliton absorption spectroscopy,” Phys. Rev. A81, 033840 (2010). [CrossRef]
  24. V. L. Kalashnikov, I. G. Poloyko, V. P. Mikhailov, and D. von der Linde, “Regular, quasi-periodic, and chaotic behavior in continuous-wave solid-state Kerr-lens mode-locked lasers,” J. Opt. Soc. Am. B14, 2691–2695 (1997). [CrossRef]
  25. Q. Xing, L. Chai, W. Zhang, and C.-Y. Wang, “Regular, period-doubling, quasi-periodic, and chaotic behavior in a self-mode-locked Ti:sapphire laser,” Opt. Commun.162, 71–74 (1999). [CrossRef]
  26. J.-H. Lin and W.-F. Hsieh, “Three-frequency chaotic instability in soft-aperture Kerr-lens mode-locked laser around 1/3-degenerate cavity configuration,” Opt. Commun.225, 393–402 (2003). [CrossRef]
  27. J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E70, 066612 (2004). [CrossRef]
  28. F. Li, P. K. A. Wai, and J. N. Kutz, “Geometrical description of the onset of multi-pulsing in mode-locked laser cavities,” J. Opt. Soc. Am. B27, 2068–2077 (2010). [CrossRef]
  29. H. I. Choi and W. J. Williams, “Improved time-frequency representation of multicomponent signals using exponential kernels,” IEEE Trans. Acoust. Speech Signal Process.37, 862–871 (1989). [CrossRef]
  30. B. Per, B. Tomas, and J. Mogens Høgh, “Mode-locking and the transition to chaos in dissipative systems,” Phys. Scr.1985, 50–58 (1985).
  31. V. L. Kalashnikov and A. Chernykh, “Spectral anomalies and stability of chirped-pulse oscillators,” Phys. Rev. A75, 033820 (2007). [CrossRef]
  32. C. Baesens, J. Guckenheimer, S. Kim, and R. S. MacKay, “Three coupled oscillators: mode-locking, global bifurcations and toroidal chaos,” Physica D Nonlinear Phenomena49, 387–475 (1991). [CrossRef]
  33. D. Pazó, E. Sánchez, and M. A. Matías, “Transition to high-dimensional chaos through quasiperiodic motion,” Int. J. Bifurc. Chaos11, 2683–2688 (2001). [CrossRef]
  34. H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. S. Tsimring, “The analysis of observed chaotic data in physical systems,” Rev. Mod. Phys.65, 1331–1392 (1993). [CrossRef]
  35. L. A. Aguirre, “A nonlinear correlation function for selecting the delay time in dynamical reconstructions,” Phys. Lett. A203, 88–94 (1995). [CrossRef]
  36. M. B. Kennel, R. Brown, and H. D. I. Abarbanel, “Determining embedding dimension for phase-space reconstruction using a geometrical construction,” Phys. Rev. A45, 3403–3411 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (4063 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited