OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29578–29591

Interferometer phase noise due to beam misalignment on diffraction gratings

Deepali Lodhia, Daniel Brown, Frank Brückner, Ludovico Carbone, Paul Fulda, Keiko Kokeyama, and Andreas Freise  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29578-29591 (2013)
http://dx.doi.org/10.1364/OE.21.029578


View Full Text Article

Enhanced HTML    Acrobat PDF (1943 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

All-reflective interferometer configurations have been proposed for the next generation of gravitational wave detectors, with diffractive elements replacing transmissive optics. However, an additional phase noise creates more stringent conditions for alignment stability. A framework for alignment stability with the use of diffractive elements was required using a Gaussian model. We successfully create such a framework involving modal decomposition to replicate small displacements of the beam (or grating) and show that the modal model does not contain the phase changes seen in an otherwise geometric planewave approach. The modal decomposition description is justified by verifying experimentally that the phase of a diffracted Gaussian beam is independent of the beam shape, achieved by comparing the phase change between a zero-order and first-order mode beam. To interpret our findings we employ a rigorous time-domain simulation to demonstrate that the phase changes resulting from a modal decomposition are correct, provided that the coordinate system which measures the phase is moved simultaneously with the effective beam displacement. This indeed corresponds to the phase change observed in the geometric planewave model. The change in the coordinate system does not instinctively occur within the analytical framework, and therefore requires either a manual change in the coordinate system or an addition of the geometric planewave phase factor.

© 2013 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1960) Diffraction and gratings : Diffraction theory
(050.5080) Diffraction and gratings : Phase shift

ToC Category:
Diffraction and Gratings

History
Original Manuscript: March 27, 2013
Revised Manuscript: October 11, 2013
Manuscript Accepted: October 16, 2013
Published: November 22, 2013

Citation
Deepali Lodhia, Daniel Brown, Frank Brückner, Ludovico Carbone, Paul Fulda, Keiko Kokeyama, and Andreas Freise, "Interferometer phase noise due to beam misalignment on diffraction gratings," Opt. Express 21, 29578-29591 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29578


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Harry, “Advanced Ligo: the next generation of gravitational wave detectors,” Class. Quantum Grav.27, 084006 (2010). [CrossRef]
  2. T. Accadia, F. Acernese, F. Antonucci, P. Astone, G. Ballardin, F. Barone, M. Barsuglia, A. Basti, T. Bauer, M. Bebronne, and , “Status of the Virgo project,” Class. Quantum Grav.28, 114002 (2011). [CrossRef]
  3. B. Willke, P. Ajith, B. Allen, P. Aufmuth, C. Aulbert, S. Babak, R. Balasubramanian, B. Barr, S. Berukoff, A. Bunkowski, and , “The GEO-HF project,” Class. Quantum Grav.23, S207 (2006). [CrossRef]
  4. R. Drever, “Concepts for extending the ultimate sensitivity of interferometric gravitational wave detectors using non-transmissive optics with diffractive or holographic coupling,” in Proceedings of the Seventh Marcel Grossman Meeting on General Relativity, M. Keiser and R. T. Jantzen, eds. (World Scientific, 1995).
  5. A. Bunkowski, O. Burmeister, T. Clausnitzer, E. Kley, A. Tünnermann, K. Danzmann, and R. Schnabel, “Diffractive optics for gravitational wave detectors,” J. Phys.: Conf. Ser.32, 333–338 (2006). [CrossRef]
  6. A. Bunkowski, O. Burmeister, P. Beyersdorf, K. Danzmann, R. Schnabel, T. Clausnitzer, E. Kley, and A. Tünnermann, “Low-loss grating for coupling to a high-finesse cavity,” Opt. Lett.29, 2342–2344 (2004). [CrossRef] [PubMed]
  7. M. Britzger, D. Friedrich, S. Kroker, F. Brückner, O. Burmeister, E. Kley, A. Tünnermann, K. Danzmann, and R. Schnabel, “Pound-Drever-Hall error signals for the length control of three-port grating coupled cavities,” Appl. Opt.50, 4340–4346 (2011). [CrossRef] [PubMed]
  8. D. Friedrich, O. Burmeister, A. Bunkowski, T. Clausnitzer, S. Fahr, E. Kley, A. Tünnermann, K. Danzmann, and R. Schnabel, “Diffractive beam splitter characterization via a power-recycled interferometer,” Opt. Lett.33, 101–103 (2008). [CrossRef] [PubMed]
  9. S. Kroker, T. Käsebier, F. Brückner, F. Fuchs, E. Kley, and A. Tünnermann, “Reflective cavity couplers based on resonant waveguide gratings,” Opt. Express19, 16466–16479 (2011). [CrossRef] [PubMed]
  10. S. Wise, V. Quetschke, A. Deshpande, G. Mueller, D. Reitze, D. Tanner, B. Whiting, Y. Chen, A. Tünnermann, E. Kley, and , “Phase effects in the diffraction of light: beyond the grating equation,” Phys. Rev. Lett.95, 13901 (2005). [CrossRef]
  11. A. Freise, A. Bunkowski, and R. Schnabel, “Phase and alignment noise in grating interferometers,” New J. Phys.9, 433 (2007). [CrossRef]
  12. J. Hallam, S. Chelkowski, A. Freise, S. Hild, B. Barr, K. Strain, O. Burmeister, and R. Schnabel, “Coupling of lateral grating displacement to the output ports of a diffractive Fabry-Perot cavity,” J. Opt. A, 11, 085502 (2009). [CrossRef]
  13. A. Freise, G. Heinzel, H. Lück, R. Schilling, B. Willke, and K. Danzmann, “Frequency-domain interferometer simulation with higher-order spatial modes,” Class. Quantum Grav.21, S1067 (2004). [CrossRef]
  14. D. Lodhia, F. Brückner, L. Carbone, P. Fulda, K. Kokeyama, and A. Freise, “Phase effects in Gaussian beams on diffraction gratings,” J. Phys.: Conf. Ser.363012014 (2012). [CrossRef]
  15. R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B, 31, 97–105 (1983). [CrossRef]
  16. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (3rd ed., Artech House, 2005).
  17. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag.14, 302–307 (1966). [CrossRef]
  18. D. Brown, D. Friedrich, Frank Brückner, L. Carbone, R. Schnabel, and A. Freise, “Invariance of waveguide grating mirrors to lateral displacement phase shifts,” Opt. Letters, 38, 1844–1846 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited