OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29643–29655

Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon

Thibault J.-Y. Derrien, Jörg Krüger, Tatiana E. Itina, Sandra Höhm, Arkadi Rosenfeld, and Jörn Bonse  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29643-29655 (2013)
http://dx.doi.org/10.1364/OE.21.029643


View Full Text Article

Enhanced HTML    Acrobat PDF (2234 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The formation of near-wavelength laser-induced periodic surface structures (LIPSS) on silicon upon irradiation with sequences of Ti:sapphire femtosecond laser pulse pairs (pulse duration 150 fs, central wavelength 800 nm) is studied theoretically. For this purpose, the nonlinear generation of conduction band electrons in silicon and their relaxation is numerically calculated using a two-temperature model approach including intrapulse changes of optical properties, transport, diffusion and recombination effects. Following the idea that surface plasmon polaritons (SPP) can be excited when the material turns from semiconducting to metallic state, the “SPP active area” is calculated as function of fluence and double-pulse delay up to several picoseconds and compared to the experimentally observed rippled surface areas. Evidence is presented that multi-photon absorption explains the large increase of the rippled area for temporally overlapping pulses. For longer double-pulse delays, relevant relaxation processes are identified. The results demonstrate that femtosecond LIPSS on silicon are caused by the excitation of SPP and can be controlled by temporal pulse shaping.

© 2013 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.6000) Materials : Semiconductor materials
(240.5420) Optics at surfaces : Polaritons
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 17, 2013
Revised Manuscript: October 23, 2013
Manuscript Accepted: October 27, 2013
Published: November 22, 2013

Citation
Thibault J.-Y. Derrien, Jörg Krüger, Tatiana E. Itina, Sandra Höhm, Arkadi Rosenfeld, and Jörn Bonse, "Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon," Opt. Express 21, 29643-29655 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29643


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett.82, 4462–4464 (2003). [CrossRef]
  2. R. Wagner and J. Gottmann, “Sub-wavelength ripple formation on various materials induced by tightly focused femtosecond laser radiation,” J. Phys. Conf. Ser.59, 333–337 (2007). [CrossRef]
  3. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser,” ACS Nano3, 4062–4070 (2009). [CrossRef] [PubMed]
  4. U. Chakravarty, R. Ganeev, P. Naik, J. Chakera, M. Babu, and P. Gupta, “Nano-ripple formation on different band-gap semiconductor surfaces using femtosecond pulses,” J. Appl. Phys.109, 084347 (2011). [CrossRef]
  5. J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl.24, 042006 (2012). [CrossRef]
  6. J. E. Sipe, J. F. Young, J. Preston, and H. V. Driel, “ Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27, 1141–1154 (1983). [CrossRef]
  7. A. M. Bonch-Bruevich, M. N. Libenson, V. S. Makin, and V. A. Trubaev, “ Surface electromagnetic waves in optics,” Opt. Eng.31, 718–730 (1992). [CrossRef]
  8. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited - non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci.197–198, 891–895 (2002). [CrossRef]
  9. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited - a comparative study on ZnO,” J. Appl. Phys.105, 034908 (2009). [CrossRef]
  10. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A74, 19–25 (2002). [CrossRef]
  11. F. Costache, S. Kouteva-Arguirova, and J. Reif, “Sub-damage-threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation,” Appl. Phys. A79, 1429–1432 (2004). [CrossRef]
  12. M. Guillermin, F. Garrelie, N. Sanner, E. Audouard, and H. Soder, “Single and multi-pulse formation of surface structures under static femtosecond irradiation,” Appl. Surf. Sci.253, 8075–8079 (2007). [CrossRef]
  13. J. Bonse, A. Rosenfeld, and J. Krüger, “ On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys.106, 104910 (2009). [CrossRef]
  14. J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys.108, 034903 (2010). [CrossRef]
  15. T. J.-Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys.114, 083104 (2013). [CrossRef]
  16. G. A. Martsinovskii, G. D. Shandybina, D. S. Smirnov, S. V. Zabotnov, L. A. Golovan, V. Y. Timoshenko, and P. K. Kashkarov, “ Ultrashort excitations of surface polaritons and waveguide modes in semiconductors,” Opt. Spectrosc.105, 67–72 (2008). [CrossRef]
  17. T. J.-Y. Derrien, T. Sarnet, M. Sentis, and T. E. Itina, “Application of a two-temperature model for the investigation of the periodic structure formation on Si surface in femtosecond laser interactions,” J. Optoelectron. Adv. Mater.12, 610–615 (2010).
  18. G. Tsibidis, M. Barberoglou, P. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B86, 115316 (2012). [CrossRef]
  19. T. J.-Y. Derrien, “Nanostructuration de cellules photovoltaiques par impulsion laser femtoseconde. etude des mécanismes de formation,” Ph.D. thesis, Université de la Méditerranée - Aix Marseille II (2012).
  20. T. Crawford, G. Botton, and H. Haugen, “Crystalline orientation effects on conical structure formation in femtosecond laser irradiation of silicon and germanium,” Appl. Surf. Sci.256, 1749–1755 (2010). [CrossRef]
  21. K. Sokolowski-Tinten, A. Barty, S. Boutet, U. Shymanovich, H. Chapman, M. Bogan, S. Marchesini, S. Hau-Riege, N. Stojanovic, J. Bonse, Y. Rosandi, H. M. Urbassek, R. Tobey, H. Ehrke, A. Cavalleri, S. Düsterer, H. Redlin, M. Frank, S. Bajt, J. Schulz, M. Seibert, J. Hajdu, R. Treusch, C. Bostedt, M. Hoener, and T. Möller, “Short-pulse laser induced transient structure formation and ablation studied with time-resolved coherent xuv-scattering,” AIP Conf. Proc.1278, 373–379 (2010). [CrossRef]
  22. S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Area dependence of femtosecond laser-induced periodic surface structures for varying band gap materials after double pulse excitation,” Appl. Surf. Sci.278, 7–12 (2013). [CrossRef]
  23. S. Höhm, M. Rohloff, A. Rosenfeld, J. Krüger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences,” Appl. Phys. A110, 553–557 (2013). [CrossRef]
  24. J. E. Sipe and H. V. Driel, “Laser induced periodic surface structure: an experimental and theoretical review,” Proc. SPIE1033, 302–318 (1988). [CrossRef]
  25. N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “ A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials - the problem of coulomb explosion,” Appl. Phys. A81, 345–356 (2005). [CrossRef]
  26. C. Shank, R. Yen, and C. Hirlimann, “Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon,” Phys. Rev. Lett.50, 454–457 (1983). [CrossRef]
  27. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B61, 2643–2650 (2000). [CrossRef]
  28. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1986).
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  30. D. Bäuerle, Laser Processing and Chemistry (Springer, 2011), 4th ed. [CrossRef]
  31. N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron.40, 966–985 (2010). [CrossRef]
  32. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  33. T. Sjodin, H. Petek, and H.-L. Dai, “ Ultrafast carrier dynamics in silicon: A two-color transient reflection grating study on a (111) surface,” Phys. Rev. Lett.81, 5664–5667 (1998). [CrossRef]
  34. E. J. Yoffa, “Dynamics of dense laser-induced plasmas,” Phys. Rev. B21, 2415–2425 (1980). [CrossRef]
  35. H. V. Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-μm picosecond laser pulses,” Phys. Rev. B35, 8166–8176 (1987). [CrossRef]
  36. A. Sabbah and D. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B66, 165217 (2002). [CrossRef]
  37. M. Harb, R. Ernstorfer, T. Dartigalongue, C. T. Hebeisen, R. E. Jordan, and R. J. D. Miller, “Carrier relaxation and lattice heating dynamics in silicon revealed by femtosecond electron diffraction,” J. Phys. Chem. B110, 25308–25313 (2006). [CrossRef] [PubMed]
  38. P. Desai, “Thermodynamic properties of iron and silicon,” J. Phys. Chem. Ref. Data15, 967–983 (1986). [CrossRef]
  39. A. L. Magna, P. Alippi, V. Privitera, G. Fortunato, M. Camalleri, and B. Svensson, “A phase-field approach to the simulation of the excimer laser annealing process in Si,” J. Appl. Phys.95, 4806–4814 (2004). [CrossRef]
  40. W.-K. Rhim and K. Ohsaka, “Thermophysical properties measurement of molten silicon by high-temperature electrostatic levitator: density, volume expansion, specific heat capacity, emissivity, surface tension and viscosity,” J. Cryst. Growth208, 313–321 (2000). [CrossRef]
  41. D. Korfiatis, K. Thoma, and J. Vardaxoglou, “Conditions for femtosecond laser melting of silicon,” J. Phys. D Appl. Phys.40, 6803–6808 (2007). [CrossRef]
  42. H. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics - The Finite Volume Method (Pearson Education, 2007).
  43. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University, 2007).
  44. J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys.97, 013538 (2005). [CrossRef]
  45. J. Bogdanowicz, M. Gilbert, N. Innocenti, S. Koelling, B. Vanderheyden, and W. Vandervorst, “Light absorption in conical silicon particles,” Opt. Express21, 3891–3896 (2013). [CrossRef] [PubMed]
  46. M. Huang, Y. Cheng, F. Zhao, and Z. Xu, “The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale,” Ann. Phys.S25, 74–86 (2013). [CrossRef]
  47. A. Vorobyev and C. Guo, “Antireflection effect of femtosecond laser-induced periodic surface structures on silicon,” Opt. Express19, A1031–A1036 (2011). [CrossRef] [PubMed]
  48. J. Bonse, “All-optical characterization of single femtosecond laser-pulse-induced amorphization in silicon,” Appl. Phys. A84, 63–66 (2006). [CrossRef]
  49. A. Esser, W. Kütt, M. Strahnen, G. Maidorn, and H. Kurz, “Femtosecond transient reflectivity measurements as a probe for process-induced defects in silicon,” Appl. Surf. Sci.46, 446–450 (1990). [CrossRef]
  50. S. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater.1, 217–224 (2002). [CrossRef]
  51. D. von der Linde and K. Sokolowski-Tinten, “The physical mechanisms of short-pulse laser ablation,” Appl. Surf. Sci.154–155, 1–10 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited