OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29679–29686

Observation of 1.2-GHz linewidth of zero-phonon-line in photoluminescence spectra of nitrogen vacancy centers in nanodiamonds using a Fabry-Perot interferometer

Hong-Quan Zhao, Masazumi Fujiwara, Masayuki Okano, and Shigeki Takeuchi  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29679-29686 (2013)
http://dx.doi.org/10.1364/OE.21.029679


View Full Text Article

Enhanced HTML    Acrobat PDF (914 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photoluminescence (PL) spectra of single nitrogen vacancy (NV) centers in 50-nm diamond nanocrystals at the zero-phonon line (ZPL) were directly observed using a Fabry-Perot interferometer at cryogenic temperatures. The narrowest linewidth of ZPL was 1.2 GHz (1.9±0.7 GHz on average), comparable to ZPL linewidths in PL spectra reported for NV centers in pure bulk diamond. This observation is important to the application of NV centers for use in quantum communication and computation devices, and in nano-sensing.

© 2013 Optical Society of America

OCIS Codes
(160.2220) Materials : Defect-center materials
(300.0300) Spectroscopy : Spectroscopy
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Spectroscopy

History
Original Manuscript: September 30, 2013
Revised Manuscript: November 15, 2013
Manuscript Accepted: November 15, 2013
Published: November 22, 2013

Citation
Hong-Quan Zhao, Masazumi Fujiwara, Masayuki Okano, and Shigeki Takeuchi, "Observation of 1.2-GHz linewidth of zero-phonon-line in photoluminescence spectra of nitrogen vacancy centers in nanodiamonds using a Fabry-Perot interferometer," Opt. Express 21, 29679-29686 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29679


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Jelezko and J. Wrachtrup, “Single defect centers in diamond: A review,” Phys. Status Solidi A203(13), 3207–3225 (2006). [CrossRef]
  2. Y. S. Park, A. K. Cook, and H. L. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett.6(9), 2075–2079 (2006). [CrossRef] [PubMed]
  3. L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science314(5797), 281–285 (2006). [CrossRef] [PubMed]
  4. A. Batalov, V. Jacques, F. Kaiser, P. Siyushev, P. Neumann, L. J. Rogers, R. L. McMurtrie, N. B. Manson, F. Jelezko, and J. Wrachtrup, “Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond,” Phys. Rev. Lett.102(19), 195506 (2009). [CrossRef] [PubMed]
  5. P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett.97(8), 083002 (2006). [CrossRef] [PubMed]
  6. Y. M. Shen, T. M. Sweeney, and H. L. Wang, “Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals,” Phys. Rev. B77(3), 033201 (2008). [CrossRef]
  7. K.-M. C. Fu, C. Santori, P. E. Barclay, L. J. Rogers, N. B. Manson, and R. G. Beausoleil, “Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond,” Phys. Rev. Lett.103(25), 256404 (2009). [CrossRef] [PubMed]
  8. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature464(7285), 45–53 (2010). [CrossRef] [PubMed]
  9. K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Nonlinear interaction of two photons at a one-dimensional atom: spatiotemporal quantum coherence in the emitted field,” Phys. Rev. A68(1), 013803 (2003). [CrossRef]
  10. H. F. Hofmann, K. Kojima, S. Takeuchi, and K. Sasaki, “Entanglement and four wave mixing effects in the dissipation free nonlinear interaction of two photons at a single atom,” Phys. Rev. A68(4), 043813 (2003). [CrossRef]
  11. J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature455(7213), 644–647 (2008). [CrossRef] [PubMed]
  12. C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Towards a picosecond transform-limited nitrogen-vacancy based single photon source,” Opt. Express16(9), 6240–6250 (2008). [CrossRef] [PubMed]
  13. J. L. O’Brien, “Optical quantum computing,” Science318(5856), 1567–1570 (2007). [CrossRef] [PubMed]
  14. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature466(7307), 730–734 (2010). [CrossRef] [PubMed]
  15. T. Nagata, R. Okamoto, J. L. O’brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science316(5825), 726–729 (2007). [CrossRef] [PubMed]
  16. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. N. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol.5(3), 195–199 (2010). [CrossRef] [PubMed]
  17. O. Benson, “Assembly of hybrid photonic architectures from nanophotonic constituents,” Nature480(7376), 193–199 (2011). [CrossRef] [PubMed]
  18. J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett.97(14), 141108 (2010). [CrossRef]
  19. T. Schröder, A. W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Lett.11(1), 198–202 (2011). [CrossRef] [PubMed]
  20. Y. S. Park, A. K. Cook, and H. L. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett.6(9), 2075–2079 (2006). [CrossRef] [PubMed]
  21. T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express20(10), 10490–10497 (2012). [CrossRef] [PubMed]
  22. M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett.11(10), 4362–4365 (2011). [CrossRef] [PubMed]
  23. C. Santori, P. E. Barclay, K.-M. C. Fu, R. G. Beausoleil, S. Spillane, and M. Fisch, “Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond,” Nanotechnology21(27), 274008 (2010). [CrossRef] [PubMed]
  24. A. Faraon, C. Santori, Z.-H. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett.109(3), 033604 (2012). [CrossRef] [PubMed]
  25. H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett.108(4), 043604 (2012). [CrossRef] [PubMed]
  26. C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature419(6907), 594–597 (2002). [CrossRef] [PubMed]
  27. H.-Q. Zhao, M. Fujiwara, and S. Takeuchi, “Suppression of fluorescence phonon sideband from nitrogen vacancy centers in diamond nanocrystals by substrate effect,” Opt. Express20(14), 15628–15635 (2012). [CrossRef] [PubMed]
  28. H.-Q. Zhao, M. Fujiwara, and S. Takeuchi, “Effect of substrates on the temperature dependence of fluorescence spectra of nitrogen vacancy centers in diamond nanocrystals,” Jpn. J. Appl. Phys.51, 090110 (2012). [CrossRef]
  29. E. Neu, C. Hepp, M. Hauschild, S. Gsell, M. Fischer, H. Sternschulte, D. Steinmüller-Nethl, M. Schreck, and C. Becher, “Low temperature investigations of single silicon vacancy colour centres in diamond,” New J. Phys.15(4), 043005 (2013). [CrossRef]
  30. The error was the square root of the sample variance of the 7-NV data, and not the unbiased sample variance, since our pre-selection excluded NV centers having excessively large ZPL linewidths, on account of which they could not be detected by the FP interferometer.
  31. F. Jelezko, I. Popa, A. Gruber, C. Tietz, J. Wrachtrup, A. Nizovtsev, and S. Kilin, “Single spin states in a defect center resolved by optical spectroscopy,” Appl. Phys. Lett.81(12), 2160–2162 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited