OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29695–29710

Fast optical cooling of nanomechanical cantilever with the dynamical Zeeman effect

Jian-Qi Zhang, Shuo Zhang, Jin-Hua Zou, Liang Chen, Wen Yang, Yong Li, and Mang Feng  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29695-29710 (2013)
http://dx.doi.org/10.1364/OE.21.029695


View Full Text Article

Enhanced HTML    Acrobat PDF (1393 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an efficient optical electromagnetically induced transparency (EIT) cooling scheme for a cantilever with a nitrogen-vacancy center attached in a non-uniform magnetic field using dynamical Zeeman effect. In our scheme, the Zeeman effect combined with the quantum interference effect enhances the desired cooling transition and suppresses the undesired heating transitions. As a result, the cantilever can be cooled down to nearly the vibrational ground state under realistic experimental conditions within a short time. This efficient optical EIT cooling scheme can be reduced to the typical EIT cooling scheme under special conditions.

© 2013 Optical Society of America

OCIS Codes
(140.3320) Lasers and laser optics : Laser cooling
(260.7490) Physical optics : Zeeman effect
(270.1670) Quantum optics : Coherent optical effects
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Quantum Optics

History
Original Manuscript: October 8, 2013
Revised Manuscript: November 14, 2013
Manuscript Accepted: November 15, 2013
Published: November 22, 2013

Citation
Jian-Qi Zhang, Shuo Zhang, Jin-Hua Zou, Liang Chen, Wen Yang, Yong Li, and Mang Feng, "Fast optical cooling of nanomechanical cantilever with the dynamical Zeeman effect," Opt. Express 21, 29695-29710 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29695


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. B. Braginsky and A. B. Manukin, Measurements of Weak Forces in Physics Experiments, D. H. Douglass, ed. (Chicago University, 1977).
  2. L. F. Wei, Y. X. Liu, C. P. Sun, and F. Nori, “Probing tiny nanomechanical resonator: classical or quantum mechanical?,” Phys. Rev. Lett.97, 237201 (2006). [CrossRef]
  3. F. Marquardt and S. M. Girvin, “Optomechanics,” Physics2, 40 (2009). [CrossRef]
  4. H. T. Tan and G. X. Li, “Multicolor quadripartite entanglement from an optomechanical cavity,” Phys. Rev. A84, 024301 (2011). [CrossRef]
  5. M. J. Hartmann and M. B. Plenio, “Steady state entanglement in the mechanical vibrations of two dielectric membranes,” Phys. Rev. Lett.101, 200503 (2008). [CrossRef] [PubMed]
  6. S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett.108, 120801 (2012). [CrossRef] [PubMed]
  7. J. Q. Zhang, Y. Li, M. Feng, and Y. Xu, “Precision measurement of electrical charge with optomechanically induced transparency,” Phys. Rev. A86, 053806 (2012). [CrossRef]
  8. K. Stannigel, P. Rabl, A. S. Sorensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication,” Phys. Rev. Lett.105, 220501 (2010). [CrossRef]
  9. L. Tetard, A. Passian, K. T. Venmar, R. M. Lynch, B. H. Voy, G. Shekhawat, V. P. Dravid, and T. Thundat, “Imaging nanoparticles in cells by nanomechanical holography,” Nat. Nanotechnol.3, 501–505 (2008). [CrossRef] [PubMed]
  10. I. Wilson-Rae, P. Zoller, and A. Imamoglu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett.92, 075507 (2004). [CrossRef] [PubMed]
  11. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittake, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature475, 359–363 (2011). [CrossRef] [PubMed]
  12. Y. Li, Y. D. Wang, F. Xue, and C. Bruder, “Quantum theory of transmission line resonator-assisted cooling of a micromechanical resonator,” Phys. Rev. B78, 134301 (2008). [CrossRef]
  13. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature452, 72–75 (2008). [CrossRef] [PubMed]
  14. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett.99, 093901 (2007). [CrossRef] [PubMed]
  15. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett.99, 093902 (2007). [CrossRef] [PubMed]
  16. F. Xue, Y. D. Wang, Y. X. Liu, and F. Nori, “Cooling a micro-mechanical beam by coupling it to a transmission line,” Phys. Rev. B76, 205302 (2007). [CrossRef]
  17. J. -Q. Zhang, Y. Li, and M. Feng, “Cooling a charged mechanical resonator with time-dependent bias gate voltages,” J. Phys.: Condens. Matter25, 142201 (2013). [CrossRef]
  18. A. Mari and J. Eisert, “Very hot thermal light can significantly cool quantum systems,” Phys. Rev. Lett.108, 120602 (2012). [CrossRef]
  19. Y. Li, L. A. Wu, and Z. D. Wang, “Fast ground-state cooling of mechanical resonators with time-dependent optical cavities,” Phys. Rev. A83, 043804 (2011). [CrossRef]
  20. Z. J. Deng, Y. Li, and C. W. Wu, “Performance of a cooling method by quadratic coupling at high temperatures,” Phys. Rev. A85, 025804 (2012), [CrossRef]
  21. Y. Li, L. A. Wu, Y. D. Wang, and L. P. Yang, “Nondeterministic ultrafast ground-state cooling of a mechanical resonator,” Phys. Rev. B84, 094502 (2011). [CrossRef]
  22. Y.-C. Liu, Y.-F. Xiao, X. Luan, and C. W. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett.110, 153606 (2013). [CrossRef]
  23. A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature464, 697–703 (2010). [CrossRef]
  24. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Grblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478, 89–92 (2011). [CrossRef] [PubMed]
  25. C. F. Roos, D. Leibfried, A. Mundt, F. Schmidt-Kaler, J. Eschner, and R. Blatt, “Experimental demonstration of ground state laser cooling with electromagnetically induced transparency,” Phys. Rev. Lett.85, 5547–5550 (2000). [CrossRef]
  26. G. Morigi, J. Eschner, and C. H. Keitel, “Ground state laser cooling with electromagnetically induced transparency,” Phys. Rev. Lett.85, 4458–4461 (2000). [CrossRef] [PubMed]
  27. G. Morigi, “Cooling atomic motion with quantum interference,” Phys. Rev. A67, 033502 (2003). [CrossRef]
  28. A. Retzker and M. B. Plenio, “Fast cooling of trapped ions using the dynamical Stark shift,” New J. Phys.9, 279 (2007). [CrossRef]
  29. K. Xia and J. Evers, “Ground state cooling of a nanomechanical resonator in the nonresolved regime via quantum interference,” Phys. Rev. Lett.103, 227203 (2009). [CrossRef]
  30. N. M. Nusran, M. Ummal Momeen, and M. V. Gurudev Dutt, “High-dynamic-range magnetometry with a single electronic spin in diamond,” Nat. Nanotech.7, 109–113, (2012) [CrossRef]
  31. P. Rabl, P. Cappellaro, M. V. Gurudev Dutt, L. Jiang, J. R. Maze, and M. D. Lukin, “Strong magnetic coupling between an electronic spin qubit and a mechanical resonator,” Phys. Rev. B79, 041302 (2009). [CrossRef]
  32. O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nature Phys.7, 879–883 (2011). [CrossRef]
  33. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media, ” Rev. Mod. Phys.77, 633–673 (2005). [CrossRef]
  34. J. Cerrillo, A. Retzker, and M. B. Plenio, “Fast and robust laser cooling of trapped systems,” Phys. Rev. Lett.104, 043003 (2009). [CrossRef]
  35. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit, ” Nature466, 730–734 (2010). [CrossRef] [PubMed]
  36. E. Togan, Y. Chu, A. Imamoglu, and M. D. Lukin, “Laser cooling and real-time measurement of the nuclear spin environment of a solid-state qubit,” Nature478, 497–501 (2011). [CrossRef] [PubMed]
  37. J. R. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. D. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys.13, 025025 (2011). [CrossRef]
  38. M. D. LaHaye, O. Buu, B. Camarota, and K. Schwab, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature466, 730–734 (2010). [CrossRef]
  39. Q. Chen, W. L. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A83, 054305 (2011). [CrossRef]
  40. F. Mintert and C. Wunderlich, “Ion-trap quantum logic using long-wavelength radiation,” Phys. Rev. Lett.87, 257904 (2001). [CrossRef] [PubMed]
  41. P. Rabl, S. J. Kolkowitz, F. H. L. Koppens, J. G. E. Harris, P. Zoller, and M. D. Lukin, “A quantum spin transducer based on nanoelectromechanical resonator arrays,” Nature Phys.6, 602–608 (2010). [CrossRef]
  42. S. A. Gardiner, “Quantum measurement, quantum chaos, and Bose-Einstein Condensates,” Dissertation (Leopold-Franzens-Universitat Innsbruck, 1997).
  43. P. Rabl, V. Steixner, and P. Zoller, “Quantum-limited velocity readout and quantum feedback cooling of a trapped ion via electromagnetically induced transparency,” Phys. Rev. A.72, 043823 (2005). [CrossRef]
  44. Z.-Q. Yin, T.-Z Li, X. Zhang, and L. -M. Duan, “Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling,” Phys. Rev. A88, 033614 (2013). [CrossRef]
  45. V. Jacques, P. Neumann, J. Beck, M. Markham, D. Twitchen, J. Meijer, F. Kaiser, G. Balasubramanian, F. Jelezko, and J. Wrachtrup, “Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature,” Phys. Rev. Lett.102, 057403 (2009). [CrossRef] [PubMed]
  46. T. Ishikawa, K.-M. C. Fu, C. Santori, V. M. Acosta, R. G. Beausoleil, H. Watanabe, S. Shikata, and K. M. Itoh, “Optical and spin coherence properties of nitrogen-vacancy centers placed in a 100 nm thick isotopically purified diamond layer,” Nano. Lett.12, 2083–2087 (2012). [CrossRef] [PubMed]
  47. F. Reiter and A. S. Sorensen, “Effective operator formalism for open quantum systems,” Phys. Rev. A85, 032111 (2012). [CrossRef]
  48. J. I. Cirac, R. Blatt, and P. Zoller, “Laser cooling of trapped ions in a standing wave,” Phys. Rev. A46, 2668–2681 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited