OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29744–29754

Cavity mode-width spectroscopy with widely tunable ultra narrow laser

Agata Cygan, Daniel Lisak, Piotr Morzyński, Marcin Bober, Michał Zawada, Eugeniusz Pazderski, and Roman Ciuryło  »View Author Affiliations

Optics Express, Vol. 21, Issue 24, pp. 29744-29754 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1271 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explore a cavity-enhanced spectroscopic technique based on determination of the absorbtion coefficient from direct measurement of spectral width of the mode of the optical cavity filled with absorbing medium. This technique called here the cavity mode-width spectroscopy (CMWS) is complementary to the cavity ring-down spectroscopy (CRDS). While both these techniques use information on interaction time of the light with the cavity to determine absorption coefficient, the CMWS does not require to measure very fast signals at high absorption conditions. Instead the CMWS method require a very narrow line width laser with precise frequency control. As an example a spectral line shape of P7 Q6 O2 line from the B-band was measured with use of an ultra narrow laser system based on two phase-locked external cavity diode lasers (ECDL) having tunability of ± 20 GHz at wavelength range of 687 to 693 nm.

© 2013 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.3600) Lasers and laser optics : Lasers, tunable
(300.1030) Spectroscopy : Absorption
(300.3700) Spectroscopy : Linewidth
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:

Original Manuscript: August 13, 2013
Revised Manuscript: October 4, 2013
Manuscript Accepted: October 24, 2013
Published: November 25, 2013

Agata Cygan, Daniel Lisak, Piotr Morzyński, Marcin Bober, Michał Zawada, Eugeniusz Pazderski, and Roman Ciuryło, "Cavity mode-width spectroscopy with widely tunable ultra narrow laser," Opt. Express 21, 29744-29754 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. D. van Zee and J. P. Looney, Experimental Methods in the Physical Sciences: Cavity-Enhanced Spectroscopies (Elsevier Science, 2002).
  2. B. A. Paldus and A. Kochanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys.83, 975–999 (2005). [CrossRef]
  3. G. Berden and R. Engeln, Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiley-Blackwell, 2009).
  4. J. T. Hodges, H. P. Layer, W. M. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instr.75, 849–863 (2004). [CrossRef]
  5. J. T. Hodges and R. Ciuryło, “Automated high-resolution frequency-stabilized cavity ring-down absorption spectrometer,” Rev. Sci. Instrum.76, 023112 (2005). [CrossRef]
  6. D. A. Long, G.-W. Truong, R. D. van Zee, D. F. Plusquellic, and J. T. Hodges, “Frequency-agile, rapid scanning spectroscopy: absorption sensitivity of 2 × 10−12cm−1Hz−1/2with a tunable diode laser,” Appl. Phys. B, in press, DOI [CrossRef]
  7. D. Long, A. Cygan, R. van Zee, M. Okumura, C. Miller, D. Lisak, and J. Hodges, “Frequency-stabilized cavity ring-down spectroscopy,” Chem. Phys. Lett.536, 1–8 (2012). [CrossRef]
  8. A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. Trawiński, and R. Ciuryło, “High signal-to-noise ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A.85022508 (2012). [CrossRef]
  9. K. Nakagawa, T. Katsuda, A.S. Shelkovnikov, M. Delabachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun.107, 369–372 (1994). [CrossRef]
  10. G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nature Photon.7, 532–534 (2013). [CrossRef]
  11. D. Lisak, A. Cygan, K. Bielska, M. Piwiński, F. Ozimek, T. Ido, R. S. Trawiński, and R. Ciuryło, “Ultra narrow laser for optical frequency reference,” Acta Phys. Pol. A121, 614–621 (2012).
  12. M. Takamoto, F.L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature435, 321324 (2005). [CrossRef]
  13. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science319, 18081812 (2008). [CrossRef]
  14. R. Le Targat, L. Lorini, Y. Le Coq, M. Zawada, J. Guéna, M. Abgrall, M. Gurov, P. Rosenbusch, D. G. Rovera, B. Nagórny, R. Gartman, P.G. Westergaard, M.E. Tobar, M. Lours, G. Santarelli, A. Clairon, S. Bize, P. Laurent, P. Lemonde, and J. Lodewyck, “Experimental realization of an optical second with strontium lattice clocks,” Nat. Commun.4, 2109 (2013). [PubMed]
  15. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B31, 97–105 (1983). [CrossRef]
  16. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nature Photon.6, 687692 (2012). [CrossRef]
  17. C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, Ch. J. Bordé, and C. Chardonnet, “Direct determination of the Boltzmann constant by an optical method,” Phys. Rev. Lett.98, 250801 (2007). [CrossRef] [PubMed]
  18. M. Kumagai, H. Kanamori, M. Matsushita, and T. Kato, “Development of phase-lock system between two single-mode lasers for optical-optical double resonance spectroscopy,” Jpn. J. Appl. Phys.38, 6102–6106 (1999). [CrossRef]
  19. T. H. Loftus, T. Ido, M. M. Boyd, A. D. Ludlow, and J. Ye, “Narrow line cooling and momentum-space crystals,” Phys. Rev. A70, 063413 (2004). [CrossRef]
  20. T. Zelevinsky, M. M. Boyd, A. D. Ludlow, T. Ido, J. Ye, R. Ciuryło, P. Naidon, and P. S. Julienne, “Narrow Line Photoassociation in an Optical Lattice,” Phys. Rev. Lett.96, 203201 (2006). [CrossRef] [PubMed]
  21. S. Wójtewicz, D. Lisak, A. Cygan, J. Domysławska, R. Trawiński, and R. Ciuryło, “Line-shape study of self-broadened O2 transitions measured by Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy,” Phys. Rev. A84, 032511 (2011). [CrossRef]
  22. A. Foltynowicz, Fiber-laser-Based Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry, Doctoral Thesis, Umeå University, Sweden 2009.
  23. W. Demtröder, Laser Spectroscopy, Vol. 1: Basic Principles (Springer-Verlag, 2008).
  24. K. G. Libbrecht and M. W. Libbrecht, “Interferometric measurement of the resonant absorption and refractive index in rubidium gas,” Am. J. Phys.74, 1055–1060 (2006). [CrossRef]
  25. L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database” J. Quant. Spectrosc. Radiat. Transf.110, 533–572 (2009). [CrossRef]
  26. A. Cygan, D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges, “Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer,” Rev. Sci. Instrum.82, 063107 (2011). [CrossRef] [PubMed]
  27. S. Wójtewicz, K. Stec, P. Masłowski, A. Cygan, D. Lisak, R. S. Trawiński, and R. Ciuryło, “Low pressure line-shape study of self-broadened CO transitions in the (3 ← 0) band,” J. Quant. Spectrosc. Radiat. Transf.130, 191–200 (2013). [CrossRef]
  28. D. A. Long, S. Wójtewicz, and J. T. Hodges, “Effects of incomplete light extinction in frequency-agile, rapid scanning spectroscopy,” Proc. SPIE8726, 87260O (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited