OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29769–29779

Using STED and ELSM confocal microscopy for a better knowledge of fused silica polished glass interface

Rodolphe Catrin, Jérôme Neauport, Philippe Legros, Daniel Taroux, Thomas Corbineau, Philippe Cormont, and Cédric Maunier  »View Author Affiliations

Optics Express, Vol. 21, Issue 24, pp. 29769-29779 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2967 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Characteristics and nature of close surface defects existing in fused silica polished optical surfaces were explored. Samples were deliberately scratched using a modified polishing process in presence of different fluorescent dyes. Various techniques including Epi-fluorescence Laser Scanning Mode (ELSM) or STimulated Emission Depletion (STED) confocal microscopy were used to measure and quantify scratches that are sometimes embedded under the polished layer. We show using a non-destructive technique that depth of the modified region extends far below the surface. Moreover cracks of 120 nm width can be present ten micrometers below the surface.

© 2013 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(140.3330) Lasers and laser optics : Laser damage
(160.2540) Materials : Fluorescent and luminescent materials
(220.5450) Optical design and fabrication : Polishing

ToC Category:
Optical Design and Fabrication

Original Manuscript: September 17, 2013
Revised Manuscript: October 29, 2013
Manuscript Accepted: October 31, 2013
Published: November 25, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Rodolphe Catrin, Jérôme Neauport, Philippe Legros, Daniel Taroux, Thomas Corbineau, Philippe Cormont, and Cédric Maunier, "Using STED and ELSM confocal microscopy for a better knowledge of fused silica polished glass interface," Opt. Express 21, 29769-29779 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. T. Beilby, “Surface flow in crystalline solids under mechanical disturbance,” Proc. R. Soc. Lond.72(477-486), 218–225 (1903). [CrossRef]
  2. W. Klemm and A. Smekal, “Über den Grundvorgang des Polierens von Gläsern,” Naturwissenschaften29(45-46), 688–690 (1941). [CrossRef]
  3. L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids120(1-3), 152–171 (1990). [CrossRef]
  4. D. W. Camp, M. Kozlowski, L. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE3244, 356–364 (1998). [CrossRef]
  5. M. R. Kozlowski, J. Carr, I. Hutcheon, R. Torres, L. Sheehan, D. Camp, and M. Yan, “Depth profiling of polishing-induced contamination on fused silica surfaces,” Proc. SPIE3244, 365–375 (1998). [CrossRef]
  6. M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE5273, 264–272 (2004). [CrossRef]
  7. F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A18(10), 2607–2616 (2001). [CrossRef] [PubMed]
  8. J. Neauport, P. Cormont, L. Lamaignere, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun.281(14), 3802–3805 (2008). [CrossRef]
  9. J. Wang, Y. Li, H. Jinghua, X. Qiao, and Y. Guo, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc.6, 11001 (2011).
  10. F. Rainer, R. K. Dickson, R. T. Jennings, J. F. Kimmons, S. M. Maricle, R. P. Mouser, S. Schwartz, and C. L. Weinzapfel, “Development of practical damage mapping and inspection systems,” Proc. SPIE3492, 556–563 (1999). [CrossRef]
  11. T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids354(18), 2023–2037 (2008). [CrossRef]
  12. W. B. Williams, B. A. Mullany, W. C. Parker, P. J. Moyer, and M. H. Randles, “Using quantum dots to tag subsurface damage in lapped and polished glass samples,” Appl. Opt.48(27), 5155–5163 (2009). [CrossRef] [PubMed]
  13. T. Suratwala, P. Miller, M. Feit, and J. Menapace, “Scratch forensics,” Opt. Photonics News09, 12–15 (2008).
  14. W. S. Rasband, “ImageJ,” http://imagej.nih.gov/ij/ .
  15. S. Sternberg, “Biomedical image processing,” IEEE Computer16(1), 22–34 (1983). [CrossRef]
  16. J. Neauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express17(5), 3543–3554 (2009). [CrossRef] [PubMed]
  17. LEICA TCS SP2 confocal microscope, http://www.leica-microsystems.com/products/confocal-microscopes/leica-tcs-sp8-configurable-confocal/ .
  18. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett.19(11), 780–782 (1994). [CrossRef] [PubMed]
  19. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids352(52-54), 5601–5617 (2006). [CrossRef]
  20. D. C. Harris, “History of magnetorheological finishing,” Proc. SPIE8016, 1–22 (2011). [CrossRef]
  21. W. Kordonski and S. Gorodkin, “Material removal in magnetorheological finishing of optics,” Appl. Opt.50(14), 1984–1994 (2011). [CrossRef] [PubMed]
  22. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett.35(16), 2702–2704 (2010). [CrossRef] [PubMed]
  23. H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE6720, 1–12 (2007). [CrossRef]
  24. H. Bercegol and P. Grua, “Fracture related initiation and growth of surface laser damage in fused silica,” Proc. SPIE7132, 1–10 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (13884 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited