OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29818–29826

Demonstration of complex refractive index of graphene waveguide by microfiber-based Mach–Zehnder interferometer

Baicheng Yao, Yu Wu, Zegao Wang, Yang Cheng, Yunjiang Rao, Yuan Gong, Yuanfu Chen, and Yanrong Li  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29818-29826 (2013)
http://dx.doi.org/10.1364/OE.21.029818


View Full Text Article

Enhanced HTML    Acrobat PDF (2260 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The complex refractive index (CRI) of graphene waveguide (GW) is of great importance for modeling and developing graphene-based photonic or optoelectronic devices. In this paper, the CRI of the GW is investigated theoretically and experimentally, it is found that the CRI of the GW will modulate the intensity and phase of transmitting light. The phase alterations are obtained spectrally by a Microfiber-based Mach–Zehnder interferometer (MMZI), experimental results demonstrate that the CRIs of the GW vary from 2.91-i13.92 to 3.81-i14.64 for transmitting wavelengths ranging from 1510 to 1590 nm. This method cannot only be used to determine the CRI of the GW optically and provide one of the fundamental parameters for designing graphene-based optic devices for communication and sensing applications, but also is adoptable in graphene-based transformation optics for determination of the CRI of the GW at other wavelengths.

© 2013 Optical Society of America

OCIS Codes
(060.5060) Fiber optics and optical communications : Phase modulation
(160.4670) Materials : Optical materials
(310.2790) Thin films : Guided waves

ToC Category:
Materials

History
Original Manuscript: October 10, 2013
Revised Manuscript: November 14, 2013
Manuscript Accepted: November 15, 2013
Published: November 25, 2013

Citation
Baicheng Yao, Yu Wu, Zegao Wang, Yang Cheng, Yunjiang Rao, Yuan Gong, Yuanfu Chen, and Yanrong Li, "Demonstration of complex refractive index of graphene waveguide by microfiber-based Mach–Zehnder interferometer," Opt. Express 21, 29818-29826 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29818


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater.6(3), 183–191 (2007). [CrossRef] [PubMed]
  2. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008). [CrossRef] [PubMed]
  3. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108(4), 047401 (2012). [CrossRef] [PubMed]
  4. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys.4(7), 532–535 (2008). [CrossRef]
  5. M. Breusing, S. Kuehn, T. Winzer, E. Malić, F. Milde, N. Severin, J. P. Rabe, C. Ropers, A. Knorr, and T. Elsaesser, “Ultrafast nonequilibrium carrier dynamics in a single graphene layer,” Phys. Rev. B83(15), 153410 (2011). [CrossRef]
  6. B. V. Cunning, C. L. Brown, and D. Kielpinski, “Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration,” Appl. Phys. Lett.99(26), 261109 (2011). [CrossRef]
  7. G. K. Lim, Z. L. Chen, J. Clark, R. G. S. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. H. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics5(9), 554–560 (2011). [CrossRef]
  8. T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics6(2), 105–110 (2012). [CrossRef]
  9. J. T. Kim and S.-Y. Choi, “Graphene-based plasmonic waveguides for photonic integrated circuits,” Opt. Express19(24), 24557–24562 (2011). [CrossRef] [PubMed]
  10. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474(7349), 64–67 (2011). [CrossRef] [PubMed]
  11. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011). [CrossRef]
  12. Y. Wu, B. Yao, Y. Cheng, X. Liu, Y. Gong, and Y. Rao, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” J. Sel. Top. Quantum Electron.20(1), 4400206 (2013). [CrossRef]
  13. M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett.94(3), 031901 (2009). [CrossRef]
  14. X. Wang, Y. P. Chen, and D. D. Nolte, “Strong anomalous optical dispersion of graphene: complex refractive index measured by Picometrology,” Opt. Express16(26), 22105–22112 (2008). [CrossRef] [PubMed]
  15. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332(6035), 1291–1294 (2011). [CrossRef] [PubMed]
  16. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics6(11), 749–758 (2012). [CrossRef]
  17. L. Yuan, “Recent progress of in-fiber integrated interferometers,” Photonic Sens.1(1), 1–5 (2011). [CrossRef]
  18. M. Oya, H. Kishikawa, N. Goto, and S. Yanagiya, “All-optical switch consisting of two-stage interferometers controlled by using saturable absorption of monolayer graphene,” Opt. Express20(24), 27322–27330 (2012). [CrossRef] [PubMed]
  19. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys.103(6), 064302 (2008). [CrossRef]
  20. http://refractiveindex.info/?group=CRYSTALS&material=MgF2 .
  21. X. He, Z. B. Liu, and D. N. Wang, “Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating,” Opt. Lett.37(12), 2394–2396 (2012). [CrossRef] [PubMed]
  22. B. Yao, Y. Wu, L. Jia, Y. Rao, Y. Gong, and C. Jiang, “Mode field distribution of optical transmission along micro fiber affected by CNTs films with complex refraction index,” J. Opt. Soc. Am. B29(5), 891–895 (2012). [CrossRef]
  23. N. J. Horing, “Coupling of graphene and surface plasmons,” Phys. Rev. B80(19), 193401 (2009). [CrossRef]
  24. E. H. Hwang and S. D. Sarma, “Dielectric function, screening, and plasmons in two-dimensional grapheme,” Phys. Rev. B75(20), 205418 (2007). [CrossRef]
  25. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Unusual microwave response of Dirac quasiparticles in graphene,” Phys. Rev. Lett.96(25), 256802 (2006). [CrossRef] [PubMed]
  26. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003). [CrossRef] [PubMed]
  27. Z. G. Wang, Y. F. Chen, P. J. Li, X. Hao, J. B. Liu, R. Huang, and Y. R. Li, “Flexible graphene-based electroluminescent devices,” ACS Nano5(9), 7149–7154 (2011). [CrossRef] [PubMed]
  28. S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett.99(1), 016803 (2007). [CrossRef] [PubMed]
  29. H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett.101(11), 111110 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited