OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29827–29835

Omnidirectional antireflection polymer films nanoimprinted by density-graded nanoporous silicon and image improvement in display panel

Yu-Hsuan Ho, Kuan-Han Ting, Kuan-Yu Chen, Shun-Wei Liu, Wei-Cheng Tian, and Pei-Kuen Wei  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29827-29835 (2013)
http://dx.doi.org/10.1364/OE.21.029827


View Full Text Article

Enhanced HTML    Acrobat PDF (9930 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a low-cost method to fabricate large-area polycarbonate AR nanostructures to improve the luminous intensity and image clarity of a commercial 2.0-inch display panel in bright condition. The polycarbonate AR nanostructures were nanoimprinted by the graded-density nanoporous silicon template with nanoparticle-catalyzed etching. The average reflectivity of the AR film in visible wavelength region was reduced from 10.2% to 4.8% in the optimized case. After attaching on the display panel to reduce the light reflection on the substrate, the brightness enhancement and decrease of ambient light reflection were observed. Due to the enhancement of contrast ratio, the quality index of the Lena image test was improved from 0.85 to 0.92 under strong ambient illumination.

© 2013 Optical Society of America

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Optical Devices

History
Original Manuscript: October 16, 2013
Revised Manuscript: November 15, 2013
Manuscript Accepted: November 18, 2013
Published: November 25, 2013

Citation
Yu-Hsuan Ho, Kuan-Han Ting, Kuan-Yu Chen, Shun-Wei Liu, Wei-Cheng Tian, and Pei-Kuen Wei, "Omnidirectional antireflection polymer films nanoimprinted by density-graded nanoporous silicon and image improvement in display panel," Opt. Express 21, 29827-29835 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29827


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Clapham and M. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature244(5414), 281–282 (1973). [CrossRef]
  2. H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci.4(10), 3779–3804 (2011). [CrossRef]
  3. W. Luk, K. Yeung, K. Tam, K. Ng, K. Kwok, C. Kwong, A. Ng, and A. Djurišić, “Enhanced conversion efficiency of polymeric photovoltaic cell by nanostructured antireflection coating,” Org. Electron.12(4), 557–561 (2011). [CrossRef]
  4. J. Cai, J. Ye, S. Chen, X. Zhao, D. Zhang, S. Chen, Y. Ma, S. Jin, and L. Qi, “Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays,” Energy Environ. Sci.5(6), 7575–7581 (2012). [CrossRef]
  5. J. W. Leem, Y. Yeh, and J. S. Yu, “Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns,” Opt. Express20(4), 4056–4066 (2012). [CrossRef] [PubMed]
  6. Y.-H. Ho, C.-C. Liu, S.-W. Liu, H. Liang, C.-W. Chu, and P.-K. Wei, “Efficiency enhancement of flexible organic light-emitting devices by using antireflection nanopillars,” Opt. Express19(S3), A295–A302 (2011). [CrossRef] [PubMed]
  7. H. K. Raut, S. S. Dinachali, A. Y. He, V. A. Ganesh, M. S. Saifullah, J. Law, and S. Ramakrishna, “Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties,” Energy Environ. Sci.6(6), 1929–1937 (2013). [CrossRef]
  8. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett.8(11), 584–586 (1983). [CrossRef] [PubMed]
  9. M. J. Minot, “Single-layer, gradient refractive index antireflection films effective from 0.35 to 2.5 µ,” J. Opt. Soc. Am.66(6), 515–519 (1976). [CrossRef]
  10. S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science283(5401), 520–522 (1999). [CrossRef] [PubMed]
  11. Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, and H. Li, “Biomimetic surfaces for high‐performance optics,” Adv. Mater.21, 4731–4734 (2009).
  12. Y.-C. Lee, C.-C. Chang, and Y.-Y. Chou, “Experimental and simulation studies of anti-reflection sub-micron conical structures on a GaAs substrate,” Opt. Express21(S1), A36–A41 (2013). [CrossRef] [PubMed]
  13. J. Li, C. Li, C. Chen, Q. Hao, Z. Wang, J. Zhu, and X. Gao, “Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores,” ACS Appl. Mater. Interfaces4(10), 5678–5683 (2012). [CrossRef] [PubMed]
  14. K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano6(5), 3789–3799 (2012). [CrossRef] [PubMed]
  15. K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater.22(33), 3713–3718 (2010). [CrossRef] [PubMed]
  16. K. Choi, S. H. Park, Y. M. Song, C. Cho, and H. S. Lee, “Robustly nano-tailored honeycomb structure for high-throughput antireflection polymer films,” J. Mater. Chem.22(33), 17037–17043 (2012). [CrossRef]
  17. H. M. Branz, V. E. Yost, S. Ward, K. M. Jones, B. To, and P. Stradins, “Nanostructured black silicon and the optical reflectance of graded-density surfaces,” Appl. Phys. Lett.94(23), 231121 (2009). [CrossRef]
  18. L. Schirone, G. Sotgiu, and F. Califano, “Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells,” Thin Solid Films297(1–2), 296–298 (1997). [CrossRef]
  19. T. Chow, P. Maciel, and G. Fanelli, “Reactive ion etching of silicon in CCl4 and HCl plasmas,” J. Electrochem. Soc.134(5), 1281–1286 (1987). [CrossRef]
  20. F. Nicoll, “Anomalous interference films on glass by chemical treatment,” J. Opt. Soc. Am.42(4), 241–242 (1952). [CrossRef]
  21. Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett.96(15), 153305 (2010). [CrossRef]
  22. S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale4(15), 4603–4610 (2012). [CrossRef] [PubMed]
  23. X. Li, L. Xue, and Y. Han, “Broadband antireflection of block copolymer/homopolymer blend films with gradient refractive index structures,” J. Mater. Chem.21(15), 5817–5826 (2011). [CrossRef]
  24. J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim, and C. Sone, “Light‐extraction enhancement of GaInN light‐emitting diodes by graded‐refractive‐index indium tin oxide anti‐reflection contact,” Adv. Mater.20(4), 801–804 (2008). [CrossRef]
  25. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics1, 176–179 (2007).
  26. M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett.33(21), 2527–2529 (2008). [CrossRef] [PubMed]
  27. H.-C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett.95(12), 123501 (2009). [CrossRef]
  28. J. Y. Chen, W. L. Chang, C. K. Huang, and K. W. Sun, “Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells,” Opt. Express19(15), 14411–14419 (2011). [CrossRef] [PubMed]
  29. P.-S. Lee, O.-J. Lee, S.-K. Hwang, S.-H. Jung, S. E. Jee, and K.-H. Lee, “Vertically aligned nanopillar arrays with hard skins using anodic aluminum oxide for nano imprint lithography,” Chem. Mater.17(24), 6181–6185 (2005). [CrossRef]
  30. W. Zhou, X. Niu, G. Min, Z. Song, J. Zhang, Y. Liu, X. Li, J. Zhang, and S. Feng, “Porous alumina nano-membranes: Soft replica molding for large area UV-nanoimprint lithography,” Microelectron. Eng.86(12), 2375–2380 (2009). [CrossRef]
  31. H. Deniz, T. Khudiyev, F. Buyukserin, and M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett.99(18), 183107 (2011). [CrossRef]
  32. C.-J. Ting, M.-C. Huang, H.-Y. Tsai, C.-P. Chou, and C.-C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology19(20), 205301 (2008). [CrossRef] [PubMed]
  33. J.-T. Wu, S.-Y. Yang, W.-C. Deng, and W.-Y. Chang, “A novel fabrication of polymer film with tapered sub-wavelength structures for anti-reflection,” Microelectron. Eng.87(10), 1951–1954 (2010). [CrossRef]
  34. M.-N. Lin, M.-T. Lin, C. Y. Liu, M. Lai, N. Liu, C. Peng, H. Wang, and Y. Wang, “Long-range ordered nanoaperture array with uniform diameter and interpore spacing,” Appl. Phys. Lett.87, 173116 (2005). [CrossRef]
  35. Y.-T. Chang, S.-W. Liu, C.-H. Yuan, Y.-H. Ho, K.-Y. Chen, Y.-T. Lee, M.-F. Wu, C.-C. Lee, P.-K. Wei, C.-T. Chen, and C.-I. Wu, “Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts,” J. Appl. Phys.114, 173106 (2013).
  36. K.-Y. Chen, Y.-T. Chang, Y.-H. Ho, H.-Y. Lin, J.-H. Lee, and M.-K. Wei, “Emitter apodization dependent angular luminance enhancement of microlens-array film attached organic light-emitting devices,” Opt. Express18(4), 3238–3243 (2010). [CrossRef] [PubMed]
  37. H.-Y. Lin, Y.-H. Ho, J.-H. Lee, K.-Y. Chen, J.-H. Fang, S.-C. Hsu, M.-K. Wei, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices,” Opt. Express16(15), 11044–11051 (2008). [CrossRef] [PubMed]
  38. Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett.9(3), 81–84 (2002). [CrossRef]
  39. Z. Wu, L. Wang, and Y. Qiu, “Contrast-enhancement in organic light-emitting diodes,” Opt. Express13(5), 1406–1411 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited