OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29867–29873

Diode-pumped 88-fs Kerr-lens mode-locked Yb:Y3Ga5O12 crystal laser

Jinwei Zhang, Hainian Han, Wenlong Tian, Liang Lv, Qing Wang, and Zhiyi Wei  »View Author Affiliations

Optics Express, Vol. 21, Issue 24, pp. 29867-29873 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1301 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We realized a stable Kerr-lens mode-locked operation in a diode-pumped Yb:Y3Ga5O12 laser. Pulses as short as 88 fs at the center wavelength of 1042 nm were obtained at a repetition rate of 159.3 MHz. The maximum output power was 104 mW under the incident pump power of 3.9 W. By comparing the mode-locked characteristics under different output transmissions, we obtained pulses with the highest output power of 330 mW and a duration of 149 fs. To the best of our knowledge, this is the first demonstration of a Kerr-lens mode-locked Yb:Y3Ga5O12 laser.

© 2013 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 30, 2013
Revised Manuscript: November 4, 2013
Manuscript Accepted: November 12, 2013
Published: November 26, 2013

Jinwei Zhang, Hainian Han, Wenlong Tian, Liang Lv, Qing Wang, and Zhiyi Wei, "Diode-pumped 88-fs Kerr-lens mode-locked Yb:Y3Ga5O12 crystal laser," Opt. Express 21, 29867-29873 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Keller, W. H. Knox, and H. Roskos, “Coupled-cavity resonant passive mode-locked Ti:sapphire laser,” Opt. Lett.15, 1377–1379 (1990). [CrossRef] [PubMed]
  2. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.2, 435–453 (1996). [CrossRef]
  3. Y. Zaouter, J. Didierjean, F. Balembois, G. Lucas Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett.31, 119–121 (2006). [CrossRef] [PubMed]
  4. A. Yoshida, A. Schmidt, V. Petrov, C. Fiebig, G. Erbert, J. Liu, H. Zhang, J. Wang, and U. Griebner, “Diode-pumped mode-locked Yb:YCOB laser generating 35 fs pulses,” Opt. Lett.36, 4425–4427 (2011). [CrossRef] [PubMed]
  5. S. Rivier, X. Mateos, J. Liu, V. Petrov, U. Griebner, M. Zorn, M. Weyers, H. Zhang, J. Wang, and M. Jiang, “Passively mode-locked Yb:LuVO4 oscillator,” Opt. Express14, 11668–11671 (2006). [CrossRef] [PubMed]
  6. F. Druon, S. Chénais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. Aka, B. Viana, S. Mohr, and D. Kopf, “Diode-pumped Yb:Sr3Y(BO3)3 femtosecond laser,” Opt. Lett.27, 197–199 (2002). [CrossRef]
  7. C. Hönninger, F. Morier-Genoud, M. Moser, U. Keller, L. R. Brovelli, and C. Harder, “Efficient and tunable diode-pumped femtosecond Yb:glass lasers,” Opt. Lett.23, 126–128 (1998). [CrossRef]
  8. S. Uemura and K. Torizuka, “Center-wavelength-shifted passively mode-locked diode-pumped ytterbium(Yb):yttrium aluminum garnet(YAG) laser,” Jpn. J. Appl. Phys.44, L361–L363 (2005). [CrossRef]
  9. G. Paunescu, J. Hein, and R. Sauerbrey, “100-fs diode-pumped Yb:KGW mode-locked laser,” Appl. Phys. B79, 555–558 (2004). [CrossRef]
  10. F. Friebel, F. Druon, J. Boudeile, D. N. Papadopoulos, M. Hanna, P. Georges, P. Camy, J. L. Doualan, A. Benayad, R. Moncorgé, C. Cassagne, and G. Boudebs, “Diode-pumped 99 fs Yb:CaF2 oscillator,” Opt. Lett.34, 1474–1476 (2009). [CrossRef] [PubMed]
  11. S. Rivier, V. Petrov, A. Gross, S. Vernay, V. Wesemann, D. Rytz, and U. Griebner, “Diffusion bonding of monoclinic Yb:KY(WO4)2/KY(WO4)2 and its continuous-wave and mode-locked laser performance,” Appl. Phys. Express1,112601 (2008). [CrossRef]
  12. V. E. Kisel, A. E. Troshin, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Femtosecond pulse generation with a diode-pumped Yb3+:YVO4 laser,” Opt. Lett.30, 1150–1152 (2005). [CrossRef] [PubMed]
  13. A. Agnesi, A. Greborio, F. Pirzio, G. Reali, J. Aus der Au, and A. Guandalini, “40-fs Yb3+:CaGdAlO4 laser pumped by a single-mode 350-mW laser diode,” Opt. Express20, 10077–10082 (2012). [CrossRef] [PubMed]
  14. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett.16, 42–44 (1991). [CrossRef] [PubMed]
  15. M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, “Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser,” Opt. Lett.18, 977–979 (1993). [CrossRef] [PubMed]
  16. R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broad-band dispersion control in femtosecond lasers,” Opt. Lett.19, 201–203 (1994). [CrossRef]
  17. S. Uemura and K. Torizuka, “Sub-40-fs pulses from a diode-pumped Kerr-lens mode-locked Yb-doped yttrium aluminum garnet laser,” Jpn. J. Appl. Phys.50,010201 (2011). [CrossRef]
  18. S. Uemura and K. Torizuka, “Kerr-lens mode-locked diode-pumped Yb:YAG laser with the transverse mode passively stabilized,” Appl. Phys. Express1,012007 (2008). [CrossRef]
  19. H. Liu, J. Nees, and G. Mourou, “Diode-pumped Kerr-lens mode-locked Yb:KY(WO4)2 laser,” Opt. Lett.26, 1723–1725 (2001). [CrossRef]
  20. A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibbett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode locking in solid-state lasers,” Opt. Lett.30, 3234–3236 (2005). [CrossRef] [PubMed]
  21. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett.32, 3382–3384 (2007). [CrossRef] [PubMed]
  22. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express17, 3353–3361 (2009). [CrossRef] [PubMed]
  23. A. Schmidt, V. Petrov, U. Griebner, R. Peters, K. Petermann, G. Huber, C. Fiebig, K. Paschke, and G. Erbert, “Diode-pumped mode-locked Yb:LuScO3 single crystal laser with 74 fs pulse duration,” Opt. Lett.35, 511–513 (2010). [CrossRef] [PubMed]
  24. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett.33, 1380–1382 (2008). [CrossRef] [PubMed]
  25. O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett.36, 4746–4748 (2011). [CrossRef] [PubMed]
  26. J. E. Geusic, H. M. Marcos, and L. G. Van Uitert, “Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets,” Appl. Phys. Lett.4, 182–184 (1964). [CrossRef]
  27. F. Euler and J. A. Bruce, “Oxygen coordinates of compounds with garnet structure,” Acta Crystallogr.19, 971–974 (1965). [CrossRef]
  28. B. Henderson, H. G. Gallagher, T. P. J. Han, and M. A. Scott, “Optical spectroscopy and optimal crystal growth of some Cr4+-doped garnets,” J. Phys.: Condens. Matter12, 1927–1938 (2000). [CrossRef]
  29. S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935 nm,” Opt. Commun.275, 170–172 (2007). [CrossRef]
  30. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B39, 3337–3350 (1989). [CrossRef]
  31. P. A. Giesting and A. M. Hofmeister, “Thermal conductivity of disordered garnets from infrared spectroscopy,” Phys. Rev. B65, 144305 (2002). [CrossRef]
  32. E. Antic-Fidanccv, J. Hölsä, M. Lastusaari, and A. Lupei, “Dopant-host relationships in rare-earth oxides and garnets doped with trivalent rare-earth ions,” Phys. Rev. B64,195108 (2001). [CrossRef]
  33. I. A. Kamenskikh, N. Guerassimova, C. Dujardin, N. Garnier, G. Ledoux, C. Pedrini, M. Kirm, A. Petrosyan, and D. Spassky, “Charge transfer fluorescence and f-f luminescence in ytterbium compounds,” Opt. Mater.24, 267–274 (2003). [CrossRef]
  34. S. Heer, M. Wermuth, K. Krämer, and H. U. Güdel, “Sharp 2E upconversion luminescence of Cr3+ in Y3Ga5O12 codoped with Cr3+ and Yb3+,” Phys. Rev. B65, 125112 (2002). [CrossRef]
  35. A. Yoshikawa, M. Nikl, H. Ogino, J. H. Lee, and T. Fukuda, “Crystal growth of Yb3+-doped oxide single crystals for scintillator application,” J. Cryst. Growth250, 94–99 (2003). [CrossRef]
  36. H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron.46, 1689–1695 (2010). [CrossRef]
  37. Y. Zhang, Z. Wei, B. Zhou, C. Xu, Y. Zou, D. Li, Z. Zhang, H. Zhang, J. Wang, H. Yu, K. Wu, B. Yao, and J. Wang, “Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser,” Opt. Lett.34, 3316–3318 (2009). [CrossRef] [PubMed]
  38. Y. Zhang, Z. Wei, Q. Wang, D. Li, Z. Zhang, H. Yu, H. Zhang, J. Wang, and L. Lv, “Diode-pumped efficient continuous-wave Yb:Y3Ga5O12 laser at 1035 nm,” Opt. Lett.36, 472–474 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited