OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29894–29904

Short period La/B and LaN/B multilayer mirrors for ~6.8 nm wavelength

Igor A. Makhotkin, Erwin Zoethout, Robbert van de Kruijs, Sergey N. Yakunin, Eric Louis, A. M. Yakunin, V. Banine, S. Müllender, and Fred Bijkerk  »View Author Affiliations

Optics Express, Vol. 21, Issue 24, pp. 29894-29904 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1082 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In the first part of this article we experimentally show that contrast between the very thin layers of La and B enables close to theoretical reflectance. The reflectivity at 6.8 nm wavelength was measured from La/B multilayer mirrors with period thicknesses ranging from 3.5 to 7.2 nm at the appropriate angle for constructive interference. The difference between the measured reflectance and the reflectance calculated for a perfect multilayer structure decreases with increasing multilayer period. The reflectance of the multilayer with the largest period approaches the theoretical value, showing that the optical contrast between the very thin layers of these structures allows to experimentally access close to theoretical reflectance. In the second part of the article we discuss the structure of La/B and LaN/B multilayers. This set of multilayers is probed by hard X-rays (λ = 0.154 nm) and EUV radiation (λ = 6.8 nm). The structure is reconstructed based on a simultaneous fit of the grazing incidence hard X-ray reflectivity and the EUV reflectivity curves. The reflectivity analysis of the La/B and LaN/B multilayer mirrors shows that the lower reflectance of La/B mirrors compared to LaN/B mirrors can be explained by the presence of 5% of La atoms in the B layer and 63% of B in La layer. After multi-parametrical optimization of the LaN/B system, including the nitridation of La, the highest near normal incidence reflectivity of 57.3% at 6.6 nm wavelength has been measured from a multilayer mirror, containing 175 bi-layers. This is the highest value reported so far.

© 2013 Optical Society of America

OCIS Codes
(340.7470) X-ray optics : X-ray mirrors
(340.7480) X-ray optics : X-rays, soft x-rays, extreme ultraviolet (EUV)

ToC Category:
X-ray Optics

Original Manuscript: September 13, 2013
Revised Manuscript: November 14, 2013
Manuscript Accepted: November 20, 2013
Published: November 26, 2013

Igor A. Makhotkin, Erwin Zoethout, Robbert van de Kruijs, Sergey N. Yakunin, Eric Louis, A. M. Yakunin, V. Banine, S. Müllender, and Fred Bijkerk, "Short period La/B and LaN/B multilayer mirrors for ~6.8 nm wavelength," Opt. Express 21, 29894-29904 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Y. Platonov, L. Gomez, and D. Broadway, “Status of small d-spacing x-ray multilayers development at Osmic,” Proc. SPIE4782, 152 (2002).
  2. T. Tsarfati, E. Zoethout, R. W. E. van de Kruijs, and F. Bijkerk, “Nitridation and contrast of B4C/La interfaces and multilayers,” Thin Solid Films518(24), 7249–7252 (2010). [CrossRef]
  3. S. Andreev, M. Barysheva, N. Chkhalo, S. Gusev, A. Pestov, V. Polkovnikov, D. Rogachev, N. Salashchenko, Y. Vainer, and S. Zuev, “Multilayer X-ray mirrors based on La/B4C and La/B9C,” Tech. Phys.55(8), 1168–1174 (2010). [CrossRef]
  4. I. A. Makhotkin, E. Zoethout, E. Louis, A. M. Yakunin, S. Müllender, and F. Bijkerk, “Spectral properties of La/B--based multilayer mirrors near the boron K absorption edge,” Opt. Express20(11), 11778–11786 (2012). [CrossRef] [PubMed]
  5. T. Tsarfati, R. W. E. van de Kruijs, E. Zoethout, E. Louis, and F. Bijkerk, “Reflective multilayer optics for 6.7 nm wavelength radiation sources and next generation lithography,” Thin Solid Films518(5), 1365–1368 (2009). [CrossRef]
  6. M. Barthelmess and S. Bajt, “Thermal and stress studies of normal incidence Mo/B4C multilayers for a 6.7 nm wavelength,” Appl. Opt.50(11), 1610–1619 (2011). [CrossRef] [PubMed]
  7. C. Michaelsen, J. Wiesmann, R. Bormann, C. Nowak, C. Dieker, S. Hollensteiner, and W. Jäger, “Multilayer mirror for x rays below 190 eV,” Opt. Lett.26(11), 792–794 (2001). [CrossRef] [PubMed]
  8. J. M. André, P. Jonnard, C. Michaelsen, J. Wiesmann, F. Bridou, M. F. Ravet, A. Jerome, F. Delmotte, and E. O. Filatova, “La/B4C small period multilayer interferential mirror for the analysis of boron,” XRay Spectrom.34(3), 203–206 (2005). [CrossRef]
  9. V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, “Boron Carbide: Structure, Properties, and Stability under Stress,” J. Am. Ceram. Soc.94(11), 3605–3628 (2011). [CrossRef]
  10. V. I. Gushenets, A. Hershcovitch, T. V. Kulevoy, E. M. Oks, K. P. Savkin, A. V. Vizir, and G. Y. Yushkov, “Boron ion source based on planar magnetron discharge in self-sputtering mode,” Rev. Sci. Instrum.81(2), 02B303 (2010). [CrossRef] [PubMed]
  11. D. L. Windt, “IMD - Software for modeling the optical properties of multilayer films,” Comput. Phys.12(4), 360–370 (1998). [CrossRef]
  12. M. Fernández-Perea, J. I. Larruquert, J. A. Aznárez, J. A. Méndez, M. Vidal-Dasilva, E. Gullikson, A. Aquila, R. Soufli, and J. L. G. Fierro, “Optical constants of electron-beam evaporated boron films in the 6.8-900 eV photon energy range,” J. Opt. Soc. Am. A24(12), 3800–3807 (2007). [CrossRef] [PubMed]
  13. R. Soufli, A. L. Aquila, F. Salmassi, M. Fernández-Perea, and E. M. Gullikson, “Optical constants of magnetron-sputtered boron carbide thin films from photoabsorption data in the range 30 to 770 eV,” Appl. Opt.47(25), 4633–4639 (2008). [CrossRef] [PubMed]
  14. S. S. Andreev, M. M. Barysheva, N. I. Chkhalo, S. A. Gusev, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, L. A. Shmaenok, Y. A. Vainer, and S. Y. Zuev, “Multilayered mirrors based on La/B4C(B9C) for X-ray range near anomalous dispersion of boron (lambda approximate to 6.7 nm),” Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment603, 80-82 (2009).
  15. E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, “Nanometer interface and materials control for multilayer EUV-optical applications,” Prog. Surf. Sci.86(11-12), 255–294 (2011). [CrossRef]
  16. F. Scholze, C. Laubis, C. Buchholz, A. Fischer, S. Ploeger, F. Scholz, H. Wagne, and G. Ulm, “Status of EUV reflectometry at PTB,” Proc. SPIE5751, 749–758 (2005). [CrossRef]
  17. A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, and F. Bijkerk, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE6517, 65170I (2007).
  18. W. H. Press, Numerical Recipes 3rd Edition: The Art of Scientific Computing (Cambridge University, 2007).
  19. M. Born and E. Wolf, Principles of Optics, Seventh ed. (Cambridge University, 2000).
  20. I. A. Makhotkin, “Structural and reflective characteristics of mutlilayers for 6.x nm wavelength,” (University of Twente, Enschede, 2013).
  21. J. F. Seely, Y. A. Uspenskii, B. Kjornrattanawanich, and D. L. Windt, “Coated photodiode technique for the determination of the optical constants of reactive elements: La and Tb,” Proc. SPIE6317, 63170T (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited