OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29905–29913

Giant optical rotation in a three-dimensional semiconductor chiral photonic crystal

S. Takahashi, A. Tandaechanurat, R. Igusa, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa  »View Author Affiliations

Optics Express, Vol. 21, Issue 24, pp. 29905-29913 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3416 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical rotation is experimentally demonstrated in a semiconductor-based three-dimensional chiral photonic crystal (PhC) at a telecommunication wavelength. We design a rotationally-stacked woodpile PhC structure, where neighboring layers are rotated by 45° and four layers construct a single helical unit. The mirror-asymmetric PhC made from GaAs with sub-micron periodicity is fabricated by a micro-manipulation technique. The linearly polarized light incident on the structure undergoes optical rotation during transmission. The obtained results show good agreement with numerical simulations. The measurement demonstrates the largest optical rotation angle as large as ∼ 23° at 1.3 μm wavelength for a single helical unit.

© 2013 Optical Society of America

OCIS Codes
(160.1585) Materials : Chiral media
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: September 19, 2013
Revised Manuscript: November 15, 2013
Manuscript Accepted: November 19, 2013
Published: November 26, 2013

S. Takahashi, A. Tandaechanurat, R. Igusa, Y. Ota, J. Tatebayashi, S. Iwamoto, and Y. Arakawa, "Giant optical rotation in a three-dimensional semiconductor chiral photonic crystal," Opt. Express 21, 29905-29913 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett.106, 057402 (2011). [CrossRef] [PubMed]
  2. M. Kuwata-Gonikami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. P. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005). [CrossRef]
  3. K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, “Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings,” Opt. Express15, 9575–9583 (2007). [CrossRef] [PubMed]
  4. K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, “Observation of extraordinary optical activity in planer chiral photonic crystals,” Opt. Express16, 7189–7196 (2008). [CrossRef] [PubMed]
  5. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics4, 676–685 (2010). [CrossRef]
  6. M. Thiel, G. von Freymann, and M. Wegener, “Layer-by-layer three-dimensional chiral photonic crystal,” Opt. Lett.32, 2547–2549 (2007). [CrossRef] [PubMed]
  7. M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schröder-Turk, and M. Gu, “Miniature chiral beam-splitter based on gyroid photonic crystals,” Nat. Photonics7, 801–805 (2013). [CrossRef]
  8. K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature384, 616 (1996). [CrossRef]
  9. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90, 223113 (2007). [CrossRef]
  10. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun.3, 870 (2012). [CrossRef] [PubMed]
  11. K. D. Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Hofling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto, “Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength,” Nature491, 421–425 (2012). [CrossRef] [PubMed]
  12. W. B. Gao, P. Fallahi, E. Togan, J. M. Sanchez, and A. Imamoglu, “Observation of entanglement between a quantum dot spin and a single photon,” Nature491, 426–429 (2012). [CrossRef] [PubMed]
  13. T. Fujita, H. Kiyama, K. Morimoto, S. Teraoka, G. Allison, A. Ludwig, A. D. Wieck, A. Oiwa, and S. Tarucha, “Nondestructive real-time measurement of charge and spin dynamics of photoelectrons in a double quantum dot,” Phys. Rev. Lett.110, 266803 (2013). [CrossRef] [PubMed]
  14. H. Kosaka, T. Inagaki, Y. Rikitake, H. Imamura, Y. Mitsumori, and K. Edamatsu, “Spin state tomography of optically injected electrons in a semiconductor,” Nature457, 702–705 (2009). [CrossRef] [PubMed]
  15. S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett.2, 59–62 (2002). [CrossRef]
  16. K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassem-bly of semiconductor three-dimensional photonic crystals,” Nat. Mater.2, 117–121 (2003). [CrossRef] [PubMed]
  17. K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics2, 688–692 (2008). [CrossRef]
  18. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics5, 91–94 (2010). [CrossRef]
  19. X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, P. St, and J. Russell, “Optical activity in twisted solid-core photonic crystal fibers,” Phys. Rev. Lett.110, 143903 (2013). [CrossRef]
  20. Yu. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (John Wiley, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited