OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29921–29926

Hybrid lithography: Combining UV-exposure and two photon direct laser writing

Carsten Eschenbaum, Daniel Großmann, Katja Dopf, Siegfried Kettlitz, Tobias Bocksrocker, Sebastian Valouch, and Uli Lemmer  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29921-29926 (2013)
http://dx.doi.org/10.1364/OE.21.029921


View Full Text Article

Enhanced HTML    Acrobat PDF (2479 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a method for the combination of UV-lithography and direct laser writing using two-photon polymerization (2PP-DLW). First a dye doped photoresist is used for UV-lithography. Adding an undoped photoresist on top of the developed structures enables three-dimensional alignment of the 2PP-DLW structures by detecting the spatially varying fluorescence of the two photoresists. Using this approach we show three dimensional alignment by adding 3D structures made by 2PP-DLW to a previously UV-exposed structure. Furthermore, a fluidic system with an integrated total internal reflection mirror to observe particles in a microfluidic channel is demonstrated.

© 2013 Optical Society of America

OCIS Codes
(110.3960) Imaging systems : Microlithography
(220.3740) Optical design and fabrication : Lithography
(220.4000) Optical design and fabrication : Microstructure fabrication
(110.6895) Imaging systems : Three-dimensional lithography

ToC Category:
Laser Microfabrication

History
Original Manuscript: October 14, 2013
Revised Manuscript: November 15, 2013
Manuscript Accepted: November 15, 2013
Published: November 26, 2013

Citation
Carsten Eschenbaum, Daniel Großmann, Katja Dopf, Siegfried Kettlitz, Tobias Bocksrocker, Sebastian Valouch, and Uli Lemmer, "Hybrid lithography: Combining UV-exposure and two photon direct laser writing," Opt. Express 21, 29921-29926 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29921


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. J. Madou, Manufacturing Techniques for Microfabrication and Nanotechnology (CRC, 2012).
  2. C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng.13(2), 170–177 (2003). [CrossRef]
  3. W. Ehrfeld, “Recent developments in deep x-ray lithography,” J. Vac. Sci. Technol. B16(6), 3526 (1998). [CrossRef]
  4. A. Neumeister, “Properties of three-dimensional precision objects fabricated by using laser based micro stereo lithography,” J. Laser Micro. Nanoeng.3(2), 67–72 (2008). [CrossRef]
  5. A. Bertsch, P. Bernhard, C. Vogt, and P. Renaud, “Rapid prototyping of small size objects,” Rapid Prototyping J.6(4), 259–266 (2000). [CrossRef]
  6. A. Bertsch, H. Lorenz, and P. Renaud, “3D microfabrication by combining microstereolithography and thick resist UV lithography,” Sens. Actuators A73(1–2), 14–23 (1999).
  7. S. Steen, S. J. McNab, L. Sekaric, I. Babich, J. Patel, J. Bucchignano, M. Rooks, D. M. Fried, A. W. Topol, J. R. Brancaccio, R. Yu, J. M. Hergenrother, J. P. Doyle, R. Nunes, R. G. Viswanathan, S. Purushothaman, and M. B. Rothwell, “Hybrid lithography: The marriage between optical and e-beam lithography. A method to study process integration and device performance for advanced device nodes,” Microelectron. Eng.83(4–9), 754–761 (2006). [CrossRef]
  8. F. Romanato, R. Kumar, and E. Di Fabrizio, “Interface lithography: a hybrid lithographic approach for the fabrication of patterns embedded in three-dimensional structures,” Nanotechnology16(1), 40–46 (2005). [CrossRef]
  9. M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep.533, 1–31 (2013).
  10. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22(2), 132–134 (1997). [CrossRef] [PubMed]
  11. A. Ostendorf and B. N. Chichkov, “Two-photon polymerization: A new approach to micromachining,” Photonics Spectra (2006).
  12. O. P. Parida and B. Navakant, “Characterization of optical properties of SU-8 and fabrication of optical components,” in Int. Conf. on Opt. and Photon.(CSIO) (2009), pp. 4–7.
  13. B. J. Jung, H. J. Kong, B. G. Jeon, D.-Y. Yang, Y. Son, and K.-S. Lee, “Autofocusing method using fluorescence detection for precise two-photon nanofabrication,” Opt. Express19(23), 22659–22668 (2011). [CrossRef] [PubMed]
  14. H. Wu, T. W. Odom, D. T. Chiu, and G. M. Whitesides, “Fabrication of complex three-dimensional microchannel systems in PDMS,” J. Am. Chem. Soc.125(2), 554–559 (2003). [CrossRef] [PubMed]
  15. T. Woggon, T. Kleiner, M. Punke, and U. Lemmer, “Nanostructuring of organic-inorganic hybrid materials for distributed feedback laser resonators by two-photon polymerization,” Opt. Express17(4), 2500–2507 (2009). [CrossRef] [PubMed]
  16. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett.28(5), 301–303 (2003). [CrossRef] [PubMed]
  17. K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci.33(6), 631–681 (2008). [CrossRef]
  18. M. Canva, G. Roger, F. Cassagne, Y. Lévy, A. Brun, F. Chaput, J.-P. Boilot, A. Rapaport, C. Heerdt, and M. Bass, “Dye-doped sol-gel materials for two-photon absorption induced fluorescence,” Opt. Mater.18(4), 391–396 (2002). [CrossRef]
  19. A. Fischer, C. Cremer, and E. H. Stelzer, “Fluorescence of coumarins and xanthenes after two-photon absorption with a pulsed titanium-sapphire laser,” Appl. Opt.34(12), 1989–2003 (1995). [CrossRef] [PubMed]
  20. C. Eggeling, A. Volkmer, and C. A. M. Seidel, “Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy,” ChemPhysChem6(5), 791–804 (2005). [CrossRef] [PubMed]
  21. S. W. Kettlitz, S. Valouch, W. Sittel, and U. Lemmer, “Flexible planar microfluidic chip employing a light emitting diode and a PIN-photodiode for portable flow cytometers,” Lab Chip12(1), 197–203 (2012). [CrossRef] [PubMed]
  22. H. Yamada, Y. Yoshida, and N. Terada, “Blood cell counter in gravity-driven microchannel,” Jpn. J. Appl. Phys.44(12), 8739–8741 (2005). [CrossRef]
  23. S. Inoué and K. R. Spring, Video Microscopy: The Fundamentals (Plenum, 1997), p. 741.
  24. L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater.19(4), 495–513 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited