OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 29927–29937

Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared

Pan Ma, Duk-Yong Choi, Yi Yu, Xin Gai, Zhiyong Yang, Sukanta Debbarma, Steve Madden, and Barry Luther-Davies  »View Author Affiliations


Optics Express, Vol. 21, Issue 24, pp. 29927-29937 (2013)
http://dx.doi.org/10.1364/OE.21.029927


View Full Text Article

Enhanced HTML    Acrobat PDF (1069 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the characteristics of low-loss chalcogenide waveguides for sensing in the mid-infrared (MIR). The waveguides consisted of a Ge11.5As24Se64.5 rib waveguide core with a 10nm fluoropolymer coating on a Ge11.5As24S64.5 bottom cladding and were fabricated by thermal evaporation, photolithography and ICP plasma etching. Over most of the functional group band from 1500 to 4000cm−1 the losses were < 1dB/cm with a minimum of 0.3dB/cm at 2000cm−1. The basic capabilities of these waveguides for spectroscopy were demonstrated by measuring the absorption spectrum of soluble Prussian blue in Dimethyl Sulphoxide.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7390) Optical devices : Waveguides, planar
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Integrated Optics

History
Original Manuscript: October 21, 2013
Revised Manuscript: November 18, 2013
Manuscript Accepted: November 19, 2013
Published: November 26, 2013

Citation
Pan Ma, Duk-Yong Choi, Yi Yu, Xin Gai, Zhiyong Yang, Sukanta Debbarma, Steve Madden, and Barry Luther-Davies, "Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared," Opt. Express 21, 29927-29937 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-24-29927


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).
  2. C. Tsay, F. Toor, C. F. Gmachl, and C. B. Arnold, “Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits,” Opt. Lett.35(20), 3324–3326 (2010). [CrossRef] [PubMed]
  3. J. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007). [CrossRef] [PubMed]
  4. J. J. Hu, V. Tarasov, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express15(19), 11798–11807 (2007). [CrossRef] [PubMed]
  5. A. Ganjoo, H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano, “Planar chalcogenide glass waveguides for IR evanescent wave sensors,” J. Non-Cryst. Solids352(6-7), 584–588 (2006). [CrossRef]
  6. J. J. Hu, V. Tarasov, N. Carlie, R. Sun, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Low-loss integrated planar chalcogenide waveguides for microfluidic chemical sensing - art. no. 64440N,” In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 6444, (2007).
  7. J. Charrier, M. L. Brandily, H. Lhermite, K. Michel, B. Bureau, F. Verger, and V. Nazabal, “Evanescent wave optical micro-sensor based on chalcogenide glass,” Sens. Actuators B Chem.173, 468–476 (2012). [CrossRef]
  8. X. Gai, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. P. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express18(25), 26635–26646 (2010). [CrossRef] [PubMed]
  9. N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express18(25), 26728–26743 (2010). [CrossRef] [PubMed]
  10. N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett.31(12), 1860–1862 (2006). [CrossRef] [PubMed]
  11. J. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett.33(21), 2500–2502 (2008). [CrossRef] [PubMed]
  12. J. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced IR absorption in planar chalcogenide glass Microdisk resonators: experiment and analysis,” J. Lightwave Technol.27(23), 5240–5245 (2009). [CrossRef]
  13. J. J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge-Sb-S glass films,” Opt. Mater.30(10), 1560–1566 (2008). [CrossRef]
  14. D. Y. Choi, S. Madden, A. Rode, R. Wang, and B. Luther-Davies, “Fabrication of low loss Ge33As12Se55 (AMTIR-1) planar waveguides,” Appl. Phys. Lett.91(1), 011115 (2007). [CrossRef]
  15. D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear Optical devices,” IEEE Photon. Technol. Lett.22(7), 495–497 (2010). [CrossRef]
  16. J. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express18(2), 1469–1478 (2010). [CrossRef] [PubMed]
  17. C. Tsay, E. Mujagić, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, “Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides,” Opt. Express18(15), 15523–15530 (2010). [CrossRef] [PubMed]
  18. C. Tsay, Y. L. Zha, and C. B. Arnold, “Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides,” Opt. Express18(25), 26744–26753 (2010). [CrossRef] [PubMed]
  19. J. J. Hu, X. C. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B26(5), 1032–1041 (2009). [CrossRef]
  20. K. Richardson, L. Petit, N. Carlie, B. Zdyrko, I. Luzinov, J. Hu, A. Agarwal, L. Kimerling, T. Anderson, and M. Richardson, “Progress on the fabrication of on-Chip, integrated chalcogenide glass (Chg)-based sensors,” J. Nonlinear Opt. Phys. Mater.19(01), 75–99 (2010). [CrossRef]
  21. H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013). [CrossRef] [PubMed]
  22. H. T. Lin, L. Li, F. Deng, C. Y. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett.38(15), 2779–2782 (2013). [CrossRef] [PubMed]
  23. A. Ganjoo, H. Jain, C. Yu, J. Irudayaraj, and C. G. Pantano, “Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films,” J. Non-Cryst. Solids354(19-25), 2757–2762 (2008). [CrossRef]
  24. S. Arai, K. Tsujimoto, and S. Tachi, “Deposition in dry-Etching gas plasmas,” Jpn. J. Appl. Phys.31(Part 1, No. 6B), 2011–2019 (1992). [CrossRef]
  25. X. Gai, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express18(18), 18866–18874 (2010). [CrossRef] [PubMed]
  26. K. Vu, K. L. Yan, Z. Jin, X. Gai, D. Y. Choi, S. Debbarma, B. Luther-Davies, and S. Madden, “Hybrid waveguide from As2S3 and Er-doped TeO2 for lossless nonlinear optics,” Opt. Lett.38(11), 1766–1768 (2013). [CrossRef] [PubMed]
  27. D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl Phys A96(3), 615–625 (2009). [CrossRef]
  28. A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express16(4), 2804–2815 (2008). [CrossRef] [PubMed]
  29. X. Gai, D. Y. Choi, S. Madden, Z. Y. Yang, R. P. Wang, and B. Luther-Davies, “Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,” Opt. Lett.37(18), 3870–3872 (2012). [CrossRef] [PubMed]
  30. V. Z. Kolev, M. W. Duering, B. Luther-Davies, and A. V. Rode, “Compact high-power optical source for resonant infrared pulsed laser ablation and deposition of polymer materials,” Opt. Express14(25), 12302–12309 (2006). [CrossRef] [PubMed]
  31. P. J. Astell-Burt, J. A. Cairns, A. K. Cheetham, and R. M. Hazel, “A study of the deposition of polymeric material onto surfaces from fluorocarbon Rf Plasmas,” Plasma Chem. Plasma Process.6(4), 417–427 (1986). [CrossRef]
  32. http://sdbs.riodb.aist.go.jp/sdbs/cgi-bin/IMG.cgi?imgdir=ir&fname=NIDA63111&sdbsno=2459 ; http://sdbs.riodb.aist.go.jp/sdbs/cgi-bin/IMG.cgi?imgdir=ir&fname=NIDA28032&sdbsno=21514 .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited