OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 24 — Dec. 2, 2013
  • pp: 30019–30029

Enhanced four-wave-mixing effects by large group indices of one-dimensional silicon photonic crystal waveguides

Dong Wook Kim, Seung Hwan Kim, Seoung Hun Lee, Heung Sun Jong, Jong-Moo Lee, El-Hang Lee, and Kyong Hon Kim  »View Author Affiliations

Optics Express, Vol. 21, Issue 24, pp. 30019-30029 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2136 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Enhanced four-wave-mixing (FWM) effects have been observed with the help of large group-indices near the band edges in one-dimensional (1-D) silicon photonic crystal waveguides (Si PhCWs). A significant increase of the FWM conversion efficiency of about 17 dB was measured near the transmission band edge of the 1-D PhCW through an approximate 3.2 times increase of the group index from 8 to 24 with respect to the central transmission band region despite a large group-velocity dispersion. Numerical analyses based on the coupled-mode equations for the degenerated FWM process describe the experimentally measured results well. Our results indicate that the 1-D PhCWs are good candidates for large group-index enhanced nonlinearity devices even without having any special dispersion engineering.

© 2013 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.7370) Optical devices : Waveguides
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Nonlinear Optics

Original Manuscript: September 25, 2013
Revised Manuscript: November 19, 2013
Manuscript Accepted: November 21, 2013
Published: November 27, 2013

Dong Wook Kim, Seung Hwan Kim, Seoung Hun Lee, Heung Sun Jong, Jong-Moo Lee, El-Hang Lee, and Kyong Hon Kim, "Enhanced four-wave-mixing effects by large group indices of one-dimensional silicon photonic crystal waveguides," Opt. Express 21, 30019-30029 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Monat, M. de Strerke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt.12(10), 104003 (2010).
  2. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005). [CrossRef] [PubMed]
  3. B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express18(8), 7770–7781 (2010). [CrossRef] [PubMed]
  4. J. Li, L. O’Faolain, and T. F. Krauss, “Four-wave mixing in slow light photonic crystal waveguides with very high group index,” Opt. Express20(16), 17474–17479 (2012). [CrossRef] [PubMed]
  5. A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron.35(4/5), 365–379 (2003). [CrossRef]
  6. D. Goldring, U. Levy, and D. Mendlovic, “Highly dispersive micro-ring resonator based on one dimensional photonic crystal waveguide design and analysis,” Opt. Express15(6), 3156–3168 (2007). [CrossRef] [PubMed]
  7. D. N. Christodoulides and R. I. Joseph, “Slow Bragg Solitons in Nonlinear Periodic Structures,” Phys. Rev. Lett.62(15), 1746–1749 (1989). [CrossRef] [PubMed]
  8. B. J. Eggleton, C. M. de Sterke, A. B. Aceves, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instability and multiple soliton generation in apodized fiber gratings,” Opt. Commun.149(4-6), 267–271 (1998). [CrossRef]
  9. J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys.2(11), 775–780 (2006). [CrossRef]
  10. O. del Barco and M. Ortuno, “Slow-light transmission in one-dimensional periodic structures,” Phys. Rev. A81(2), 023833 (2010). [CrossRef]
  11. J. García, P. Sanchis, A. Martínez, and J. Martí, “1D periodic structures for slow-wave induced non-linearity enhancement,” Opt. Express16(5), 3146–3160 (2008). [CrossRef] [PubMed]
  12. J. Goeckeritz and S. Blair, “One-dimensional photonic crystal rib waveguides,” J. Lightwave Technol. Vol.25(9), 2435–2439 (2007). [CrossRef]
  13. N. Tsurumachi, S. Yamashita, N. Muroi, T. Fuji, T. Hattori, and H. Nakatsuka, “Enhancement of Nonlinear Optical Effect in One-Dimensional Photonic Crystal Structures,” Jpn. J. Appl. Phys.38(11), 6302–6308 (1999). [CrossRef]
  14. D. Goldring, U. Levy, I. E. Dotan, A. Tsukernik, M. Oksman, I. Rubin, Y. David, and D. Mendlovic, “Experimental measurement of quality factor enhancement using slow light modes in one dimensional photonic crystal,” Opt. Express16(8), 5585–5595 (2008). [CrossRef] [PubMed]
  15. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express18(22), 22915–22927 (2010). [CrossRef] [PubMed]
  16. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12(10), 104004 (2010), doi:. [CrossRef]
  17. C. Becker, M. Wegener, S. Wong, and G. von Freymann, “Phase-matched nondegenerate four-wave mixing in one-dimensional photonic crystals,” Appl. Phys. Lett.89(13), 131122 (2006). [CrossRef]
  18. K. Inoue and T. Mukai, “Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier,” Opt. Lett.26(1), 10–12 (2001). [CrossRef] [PubMed]
  19. J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express18(15), 15484–15497 (2010). [CrossRef] [PubMed]
  20. C. Husko, S. Combrié, Q. V. Tran, F. Raineri, C. W. Wong, and A. De Rossi, “Non-trivial scaling of self-phase modulation and three-photon absorption in III-V photonic crystal waveguides,” Opt. Express17(25), 22442–22451 (2009). [CrossRef] [PubMed]
  21. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd edition, (John Wiley & Sons, Inc., 2007) Chapter 7.
  22. J.-M. Lee, K.-J. Kim, and G. Kim, “Enhancing alignment tolerance of silicon waveguide by using a wide grating coupler,” Opt. Express16(17), 13024–13031 (2008). [CrossRef] [PubMed]
  23. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, Inc., 1989) Chapter 2.
  24. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Effective mode area and its optimization in silicon-nanocrystal waveguides,” Opt. Lett.37(12), 2295–2297 (2012). [CrossRef] [PubMed]
  25. M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express12(13), 2880–2887 (2004). [CrossRef] [PubMed]
  26. S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express17(4), 2298–2318 (2009). [CrossRef] [PubMed]
  27. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express15(25), 16604–16644 (2007). [CrossRef] [PubMed]
  28. M. Santagiustina, C. G. Someda, G. Vadalà, S. Combrié, and A. De Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express18(20), 21024–21029 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited